import numpy as np
import os
from os import path
import sys
import pytest
from ctypes import c_longlong, c_double, c_float, c_int, cast, pointer, POINTER
from numpy.testing import assert_array_max_ulp
from numpy.testing._private.utils import _glibc_older_than
from numpy._core._multiarray_umath import __cpu_features__
UNARY_UFUNCS = [obj for obj in np._core.umath.__dict__.values() if
isinstance(obj, np.ufunc)]
UNARY_OBJECT_UFUNCS = [uf for uf in UNARY_UFUNCS if "O->O" in uf.types]
# Remove functions that do not support `floats`
UNARY_OBJECT_UFUNCS.remove(np.invert)
UNARY_OBJECT_UFUNCS.remove(np.bitwise_count)
IS_AVX = __cpu_features__.get('AVX512F', False) or \
(__cpu_features__.get('FMA3', False) and __cpu_features__.get('AVX2', False))
IS_AVX512FP16 = __cpu_features__.get('AVX512FP16', False)
# only run on linux with AVX, also avoid old glibc (numpy/numpy#20448).
runtest = (sys.platform.startswith('linux')
and IS_AVX and not _glibc_older_than("2.17"))
platform_skip = pytest.mark.skipif(not runtest,
reason="avoid testing inconsistent platform "
"library implementations")
# convert string to hex function taken from:
# https://stackoverflow.com/questions/1592158/convert-hex-to-float #
def convert(s, datatype="np.float32"):
i = int(s, 16) # convert from hex to a Python int
if (datatype == "np.float64"):
cp = pointer(c_longlong(i)) # make this into a c long long integer
fp = cast(cp, POINTER(c_double)) # cast the int pointer to a double pointer
else:
cp = pointer(c_int(i)) # make this into a c integer
fp = cast(cp, POINTER(c_float)) # cast the int pointer to a float pointer
return fp.contents.value # dereference the pointer, get the float
str_to_float = np.vectorize(convert)
class TestAccuracy:
@platform_skip
def test_validate_transcendentals(self):
with np.errstate(all='ignore'):
data_dir = path.join(path.dirname(__file__), 'data')
files = os.listdir(data_dir)
files = list(filter(lambda f: f.endswith('.csv'), files))
for filename in files:
filepath = path.join(data_dir, filename)
with open(filepath) as fid:
file_without_comments = (
r for r in fid if r[0] not in ('$', '#')
)
data = np.genfromtxt(file_without_comments,
dtype=('|S39','|S39','|S39',int),
names=('type','input','output','ulperr'),
delimiter=',',
skip_header=1)
npname = path.splitext(filename)[0].split('-')[3]
npfunc = getattr(np, npname)
for datatype in np.unique(data['type']):
data_subset = data[data['type'] == datatype]
inval = np.array(str_to_float(data_subset['input'].astype(str), data_subset['type'].astype(str)), dtype=eval(datatype))
outval = np.array(str_to_float(data_subset['output'].astype(str), data_subset['type'].astype(str)), dtype=eval(datatype))
perm = np.random.permutation(len(inval))
inval = inval[perm]
outval = outval[perm]
maxulperr = data_subset['ulperr'].max()
assert_array_max_ulp(npfunc(inval), outval, maxulperr)
@pytest.mark.skipif(IS_AVX512FP16,
reason = "SVML FP16 have slightly higher ULP errors")
@pytest.mark.parametrize("ufunc", UNARY_OBJECT_UFUNCS)
def test_validate_fp16_transcendentals(self, ufunc):
with np.errstate(all='ignore'):
arr = np.arange(65536, dtype=np.int16)
datafp16 = np.frombuffer(arr.tobytes(), dtype=np.float16)
datafp32 = datafp16.astype(np.float32)
assert_array_max_ulp(ufunc(datafp16), ufunc(datafp32),
maxulp=1, dtype=np.float16)
@pytest.mark.skipif(not IS_AVX512FP16,
reason="lower ULP only apply for SVML FP16")
def test_validate_svml_fp16(self):
max_ulp_err = {
"arccos": 2.54,
"arccosh": 2.09,
"arcsin": 3.06,
"arcsinh": 1.51,
"arctan": 2.61,
"arctanh": 1.88,
"cbrt": 1.57,
"cos": 1.43,
"cosh": 1.33,
"exp2": 1.33,
"exp": 1.27,
"expm1": 0.53,
"log": 1.80,
"log10": 1.27,
"log1p": 1.88,
"log2": 1.80,
"sin": 1.88,
"sinh": 2.05,
"tan": 2.26,
"tanh": 3.00,
}
with np.errstate(all='ignore'):
arr = np.arange(65536, dtype=np.int16)
datafp16 = np.frombuffer(arr.tobytes(), dtype=np.float16)
datafp32 = datafp16.astype(np.float32)
for func in max_ulp_err:
ufunc = getattr(np, func)
ulp = np.ceil(max_ulp_err[func])
assert_array_max_ulp(ufunc(datafp16), ufunc(datafp32),
maxulp=ulp, dtype=np.float16)