from __future__ import annotations
import sys
from collections.abc import Collection, Callable, Sequence
from typing import Any, Protocol, TypeAlias, TypeVar, runtime_checkable, TYPE_CHECKING
import numpy as np
from numpy import (
ndarray,
dtype,
generic,
unsignedinteger,
integer,
floating,
complexfloating,
number,
timedelta64,
datetime64,
object_,
void,
str_,
bytes_,
)
from ._nested_sequence import _NestedSequence
from ._shape import _Shape
if TYPE_CHECKING:
StringDType = np.dtypes.StringDType
else:
# at runtime outside of type checking importing this from numpy.dtypes
# would lead to a circular import
from numpy._core.multiarray import StringDType
_T = TypeVar("_T")
_ScalarType = TypeVar("_ScalarType", bound=generic)
_ScalarType_co = TypeVar("_ScalarType_co", bound=generic, covariant=True)
_DType = TypeVar("_DType", bound=dtype[Any])
_DType_co = TypeVar("_DType_co", covariant=True, bound=dtype[Any])
NDArray: TypeAlias = ndarray[_Shape, dtype[_ScalarType_co]]
# The `_SupportsArray` protocol only cares about the default dtype
# (i.e. `dtype=None` or no `dtype` parameter at all) of the to-be returned
# array.
# Concrete implementations of the protocol are responsible for adding
# any and all remaining overloads
@runtime_checkable
class _SupportsArray(Protocol[_DType_co]):
def __array__(self) -> ndarray[Any, _DType_co]: ...
@runtime_checkable
class _SupportsArrayFunc(Protocol):
"""A protocol class representing `~class.__array_function__`."""
def __array_function__(
self,
func: Callable[..., Any],
types: Collection[type[Any]],
args: tuple[Any, ...],
kwargs: dict[str, Any],
) -> object: ...
# TODO: Wait until mypy supports recursive objects in combination with typevars
_FiniteNestedSequence: TypeAlias = (
_T
| Sequence[_T]
| Sequence[Sequence[_T]]
| Sequence[Sequence[Sequence[_T]]]
| Sequence[Sequence[Sequence[Sequence[_T]]]]
)
# A subset of `npt.ArrayLike` that can be parametrized w.r.t. `np.generic`
_ArrayLike: TypeAlias = (
_SupportsArray[dtype[_ScalarType]]
| _NestedSequence[_SupportsArray[dtype[_ScalarType]]]
)
# A union representing array-like objects; consists of two typevars:
# One representing types that can be parametrized w.r.t. `np.dtype`
# and another one for the rest
_DualArrayLike: TypeAlias = (
_SupportsArray[_DType]
| _NestedSequence[_SupportsArray[_DType]]
| _T
| _NestedSequence[_T]
)
if sys.version_info >= (3, 12):
from collections.abc import Buffer
ArrayLike: TypeAlias = Buffer | _DualArrayLike[
dtype[Any],
bool | int | float | complex | str | bytes,
]
else:
ArrayLike: TypeAlias = _DualArrayLike[
dtype[Any],
bool | int | float | complex | str | bytes,
]
# `ArrayLike<X>_co`: array-like objects that can be coerced into `X`
# given the casting rules `same_kind`
_ArrayLikeBool_co: TypeAlias = _DualArrayLike[
dtype[np.bool],
bool,
]
_ArrayLikeUInt_co: TypeAlias = _DualArrayLike[
dtype[np.bool] | dtype[unsignedinteger[Any]],
bool,
]
_ArrayLikeInt_co: TypeAlias = _DualArrayLike[
dtype[np.bool] | dtype[integer[Any]],
bool | int,
]
_ArrayLikeFloat_co: TypeAlias = _DualArrayLike[
dtype[np.bool] | dtype[integer[Any]] | dtype[floating[Any]],
bool | int | float,
]
_ArrayLikeComplex_co: TypeAlias = _DualArrayLike[
(
dtype[np.bool]
| dtype[integer[Any]]
| dtype[floating[Any]]
| dtype[complexfloating[Any, Any]]
),
bool | int | float | complex,
]
_ArrayLikeNumber_co: TypeAlias = _DualArrayLike[
dtype[np.bool] | dtype[number[Any]],
bool | int | float | complex,
]
_ArrayLikeTD64_co: TypeAlias = _DualArrayLike[
dtype[np.bool] | dtype[integer[Any]] | dtype[timedelta64],
bool | int,
]
_ArrayLikeDT64_co: TypeAlias = (
_SupportsArray[dtype[datetime64]]
| _NestedSequence[_SupportsArray[dtype[datetime64]]]
)
_ArrayLikeObject_co: TypeAlias = (
_SupportsArray[dtype[object_]]
| _NestedSequence[_SupportsArray[dtype[object_]]]
)
_ArrayLikeVoid_co: TypeAlias = (
_SupportsArray[dtype[void]]
| _NestedSequence[_SupportsArray[dtype[void]]]
)
_ArrayLikeStr_co: TypeAlias = _DualArrayLike[
dtype[str_],
str,
]
_ArrayLikeBytes_co: TypeAlias = _DualArrayLike[
dtype[bytes_],
bytes,
]
_ArrayLikeString_co: TypeAlias = _DualArrayLike[
StringDType,
str
]
_ArrayLikeAnyString_co: TypeAlias = (
_ArrayLikeStr_co |
_ArrayLikeBytes_co |
_ArrayLikeString_co
)
# NOTE: This includes `builtins.bool`, but not `numpy.bool`.
_ArrayLikeInt: TypeAlias = _DualArrayLike[
dtype[integer[Any]],
int,
]
# Extra ArrayLike type so that pyright can deal with NDArray[Any]
# Used as the first overload, should only match NDArray[Any],
# not any actual types.
# https://github.com/numpy/numpy/pull/22193
if sys.version_info >= (3, 11):
from typing import Never as _UnknownType
else:
from typing import NoReturn as _UnknownType
_ArrayLikeUnknown: TypeAlias = _DualArrayLike[
dtype[_UnknownType],
_UnknownType,
]