numpy/tests/test_public_api.py

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741
import sys
import sysconfig
import subprocess
import pkgutil
import types
import importlib
import inspect
import warnings

import numpy as np
import numpy
from numpy.testing import IS_WASM

import pytest

try:
    import ctypes
except ImportError:
    ctypes = None


def check_dir(module, module_name=None):
    """Returns a mapping of all objects with the wrong __module__ attribute."""
    if module_name is None:
        module_name = module.__name__
    results = {}
    for name in dir(module):
        if name == "core":
            continue
        item = getattr(module, name)
        if (hasattr(item, '__module__') and hasattr(item, '__name__')
                and item.__module__ != module_name):
            results[name] = item.__module__ + '.' + item.__name__
    return results


def test_numpy_namespace():
    # We override dir to not show these members
    allowlist = {
        'recarray': 'numpy.rec.recarray',
    }
    bad_results = check_dir(np)
    # pytest gives better error messages with the builtin assert than with
    # assert_equal
    assert bad_results == allowlist


@pytest.mark.skipif(IS_WASM, reason="can't start subprocess")
@pytest.mark.parametrize('name', ['testing'])
def test_import_lazy_import(name):
    """Make sure we can actually use the modules we lazy load.

    While not exported as part of the public API, it was accessible.  With the
    use of __getattr__ and __dir__, this isn't always true It can happen that
    an infinite recursion may happen.

    This is the only way I found that would force the failure to appear on the
    badly implemented code.

    We also test for the presence of the lazily imported modules in dir

    """
    exe = (sys.executable, '-c', "import numpy; numpy." + name)
    result = subprocess.check_output(exe)
    assert not result

    # Make sure they are still in the __dir__
    assert name in dir(np)


def test_dir_testing():
    """Assert that output of dir has only one "testing/tester"
    attribute without duplicate"""
    assert len(dir(np)) == len(set(dir(np)))


def test_numpy_linalg():
    bad_results = check_dir(np.linalg)
    assert bad_results == {}


def test_numpy_fft():
    bad_results = check_dir(np.fft)
    assert bad_results == {}


@pytest.mark.skipif(ctypes is None,
                    reason="ctypes not available in this python")
def test_NPY_NO_EXPORT():
    cdll = ctypes.CDLL(np._core._multiarray_tests.__file__)
    # Make sure an arbitrary NPY_NO_EXPORT function is actually hidden
    f = getattr(cdll, 'test_not_exported', None)
    assert f is None, ("'test_not_exported' is mistakenly exported, "
                      "NPY_NO_EXPORT does not work")


# Historically NumPy has not used leading underscores for private submodules
# much.  This has resulted in lots of things that look like public modules
# (i.e. things that can be imported as `import numpy.somesubmodule.somefile`),
# but were never intended to be public.  The PUBLIC_MODULES list contains
# modules that are either public because they were meant to be, or because they
# contain public functions/objects that aren't present in any other namespace
# for whatever reason and therefore should be treated as public.
#
# The PRIVATE_BUT_PRESENT_MODULES list contains modules that look public (lack
# of underscores) but should not be used.  For many of those modules the
# current status is fine.  For others it may make sense to work on making them
# private, to clean up our public API and avoid confusion.
PUBLIC_MODULES = ['numpy.' + s for s in [
    "ctypeslib",
    "dtypes",
    "exceptions",
    "f2py",
    "fft",
    "lib",
    "lib.array_utils",
    "lib.format",
    "lib.introspect",
    "lib.mixins",
    "lib.npyio",
    "lib.recfunctions",  # note: still needs cleaning, was forgotten for 2.0
    "lib.scimath",
    "lib.stride_tricks",
    "linalg",
    "ma",
    "ma.extras",
    "ma.mrecords",
    "polynomial",
    "polynomial.chebyshev",
    "polynomial.hermite",
    "polynomial.hermite_e",
    "polynomial.laguerre",
    "polynomial.legendre",
    "polynomial.polynomial",
    "random",
    "strings",
    "testing",
    "testing.overrides",
    "typing",
    "typing.mypy_plugin",
    "version",
]]
if sys.version_info < (3, 12):
    PUBLIC_MODULES += [
        'numpy.' + s for s in [
            "distutils",
            "distutils.cpuinfo",
            "distutils.exec_command",
            "distutils.misc_util",
            "distutils.log",
            "distutils.system_info",
        ]
    ]



PUBLIC_ALIASED_MODULES = [
    "numpy.char",
    "numpy.emath",
    "numpy.rec",
]


PRIVATE_BUT_PRESENT_MODULES = ['numpy.' + s for s in [
    "compat",
    "compat.py3k",
    "conftest",
    "core",
    "core.multiarray",
    "core.numeric",
    "core.umath",
    "core.arrayprint",
    "core.defchararray",
    "core.einsumfunc",
    "core.fromnumeric",
    "core.function_base",
    "core.getlimits",
    "core.numerictypes",
    "core.overrides",
    "core.records",
    "core.shape_base",
    "f2py.auxfuncs",
    "f2py.capi_maps",
    "f2py.cb_rules",
    "f2py.cfuncs",
    "f2py.common_rules",
    "f2py.crackfortran",
    "f2py.diagnose",
    "f2py.f2py2e",
    "f2py.f90mod_rules",
    "f2py.func2subr",
    "f2py.rules",
    "f2py.symbolic",
    "f2py.use_rules",
    "fft.helper",
    "lib.user_array",  # note: not in np.lib, but probably should just be deleted
    "linalg.lapack_lite",
    "linalg.linalg",
    "ma.core",
    "ma.testutils",
    "ma.timer_comparison",
    "matlib",
    "matrixlib",
    "matrixlib.defmatrix",
    "polynomial.polyutils",
    "random.mtrand",
    "random.bit_generator",
    "testing.print_coercion_tables",
]]
if sys.version_info < (3, 12):
    PRIVATE_BUT_PRESENT_MODULES += [
        'numpy.' + s for s in [
            "distutils.armccompiler",
            "distutils.fujitsuccompiler",
            "distutils.ccompiler",
            'distutils.ccompiler_opt',
            "distutils.command",
            "distutils.command.autodist",
            "distutils.command.bdist_rpm",
            "distutils.command.build",
            "distutils.command.build_clib",
            "distutils.command.build_ext",
            "distutils.command.build_py",
            "distutils.command.build_scripts",
            "distutils.command.build_src",
            "distutils.command.config",
            "distutils.command.config_compiler",
            "distutils.command.develop",
            "distutils.command.egg_info",
            "distutils.command.install",
            "distutils.command.install_clib",
            "distutils.command.install_data",
            "distutils.command.install_headers",
            "distutils.command.sdist",
            "distutils.conv_template",
            "distutils.core",
            "distutils.extension",
            "distutils.fcompiler",
            "distutils.fcompiler.absoft",
            "distutils.fcompiler.arm",
            "distutils.fcompiler.compaq",
            "distutils.fcompiler.environment",
            "distutils.fcompiler.g95",
            "distutils.fcompiler.gnu",
            "distutils.fcompiler.hpux",
            "distutils.fcompiler.ibm",
            "distutils.fcompiler.intel",
            "distutils.fcompiler.lahey",
            "distutils.fcompiler.mips",
            "distutils.fcompiler.nag",
            "distutils.fcompiler.none",
            "distutils.fcompiler.pathf95",
            "distutils.fcompiler.pg",
            "distutils.fcompiler.nv",
            "distutils.fcompiler.sun",
            "distutils.fcompiler.vast",
            "distutils.fcompiler.fujitsu",
            "distutils.from_template",
            "distutils.intelccompiler",
            "distutils.lib2def",
            "distutils.line_endings",
            "distutils.mingw32ccompiler",
            "distutils.msvccompiler",
            "distutils.npy_pkg_config",
            "distutils.numpy_distribution",
            "distutils.pathccompiler",
            "distutils.unixccompiler",
        ]
    ]


def is_unexpected(name):
    """Check if this needs to be considered."""
    if '._' in name or '.tests' in name or '.setup' in name:
        return False

    if name in PUBLIC_MODULES:
        return False

    if name in PUBLIC_ALIASED_MODULES:
        return False

    if name in PRIVATE_BUT_PRESENT_MODULES:
        return False

    return True


if sys.version_info < (3, 12):
    SKIP_LIST = ["numpy.distutils.msvc9compiler"]
else:
    SKIP_LIST = []


# suppressing warnings from deprecated modules
@pytest.mark.filterwarnings("ignore:.*np.compat.*:DeprecationWarning")
def test_all_modules_are_expected():
    """
    Test that we don't add anything that looks like a new public module by
    accident.  Check is based on filenames.
    """

    modnames = []
    for _, modname, ispkg in pkgutil.walk_packages(path=np.__path__,
                                                   prefix=np.__name__ + '.',
                                                   onerror=None):
        if is_unexpected(modname) and modname not in SKIP_LIST:
            # We have a name that is new.  If that's on purpose, add it to
            # PUBLIC_MODULES.  We don't expect to have to add anything to
            # PRIVATE_BUT_PRESENT_MODULES.  Use an underscore in the name!
            modnames.append(modname)

    if modnames:
        raise AssertionError(f'Found unexpected modules: {modnames}')


# Stuff that clearly shouldn't be in the API and is detected by the next test
# below
SKIP_LIST_2 = [
    'numpy.lib.math',
    'numpy.matlib.char',
    'numpy.matlib.rec',
    'numpy.matlib.emath',
    'numpy.matlib.exceptions',
    'numpy.matlib.math',
    'numpy.matlib.linalg',
    'numpy.matlib.fft',
    'numpy.matlib.random',
    'numpy.matlib.ctypeslib',
    'numpy.matlib.ma',
]
if sys.version_info < (3, 12):
    SKIP_LIST_2 += [
        'numpy.distutils.log.sys',
        'numpy.distutils.log.logging',
        'numpy.distutils.log.warnings',
    ]


def test_all_modules_are_expected_2():
    """
    Method checking all objects. The pkgutil-based method in
    `test_all_modules_are_expected` does not catch imports into a namespace,
    only filenames.  So this test is more thorough, and checks this like:

        import .lib.scimath as emath

    To check if something in a module is (effectively) public, one can check if
    there's anything in that namespace that's a public function/object but is
    not exposed in a higher-level namespace.  For example for a `numpy.lib`
    submodule::

        mod = np.lib.mixins
        for obj in mod.__all__:
            if obj in np.__all__:
                continue
            elif obj in np.lib.__all__:
                continue

            else:
                print(obj)

    """

    def find_unexpected_members(mod_name):
        members = []
        module = importlib.import_module(mod_name)
        if hasattr(module, '__all__'):
            objnames = module.__all__
        else:
            objnames = dir(module)

        for objname in objnames:
            if not objname.startswith('_'):
                fullobjname = mod_name + '.' + objname
                if isinstance(getattr(module, objname), types.ModuleType):
                    if is_unexpected(fullobjname):
                        if fullobjname not in SKIP_LIST_2:
                            members.append(fullobjname)

        return members

    unexpected_members = find_unexpected_members("numpy")
    for modname in PUBLIC_MODULES:
        unexpected_members.extend(find_unexpected_members(modname))

    if unexpected_members:
        raise AssertionError("Found unexpected object(s) that look like "
                             "modules: {}".format(unexpected_members))


def test_api_importable():
    """
    Check that all submodules listed higher up in this file can be imported

    Note that if a PRIVATE_BUT_PRESENT_MODULES entry goes missing, it may
    simply need to be removed from the list (deprecation may or may not be
    needed - apply common sense).
    """
    def check_importable(module_name):
        try:
            importlib.import_module(module_name)
        except (ImportError, AttributeError):
            return False

        return True

    module_names = []
    for module_name in PUBLIC_MODULES:
        if not check_importable(module_name):
            module_names.append(module_name)

    if module_names:
        raise AssertionError("Modules in the public API that cannot be "
                             "imported: {}".format(module_names))

    for module_name in PUBLIC_ALIASED_MODULES:
        try:
            eval(module_name)
        except AttributeError:
            module_names.append(module_name)

    if module_names:
        raise AssertionError("Modules in the public API that were not "
                             "found: {}".format(module_names))

    with warnings.catch_warnings(record=True) as w:
        warnings.filterwarnings('always', category=DeprecationWarning)
        warnings.filterwarnings('always', category=ImportWarning)
        for module_name in PRIVATE_BUT_PRESENT_MODULES:
            if not check_importable(module_name):
                module_names.append(module_name)

    if module_names:
        raise AssertionError("Modules that are not really public but looked "
                             "public and can not be imported: "
                             "{}".format(module_names))


@pytest.mark.xfail(
    sysconfig.get_config_var("Py_DEBUG") not in (None, 0, "0"),
    reason=(
        "NumPy possibly built with `USE_DEBUG=True ./tools/travis-test.sh`, "
        "which does not expose the `array_api` entry point. "
        "See https://github.com/numpy/numpy/pull/19800"
    ),
)
def test_array_api_entry_point():
    """
    Entry point for Array API implementation can be found with importlib and
    returns the main numpy namespace.
    """
    # For a development install that did not go through meson-python,
    # the entrypoint will not have been installed. So ensure this test fails
    # only if numpy is inside site-packages.
    numpy_in_sitepackages = sysconfig.get_path('platlib') in np.__file__

    eps = importlib.metadata.entry_points()
    try:
        xp_eps = eps.select(group="array_api")
    except AttributeError:
        # The select interface for entry_points was introduced in py3.10,
        # deprecating its dict interface. We fallback to dict keys for finding
        # Array API entry points so that running this test in <=3.9 will
        # still work - see https://github.com/numpy/numpy/pull/19800.
        xp_eps = eps.get("array_api", [])
    if len(xp_eps) == 0:
        if numpy_in_sitepackages:
            msg = "No entry points for 'array_api' found"
            raise AssertionError(msg) from None
        return

    try:
        ep = next(ep for ep in xp_eps if ep.name == "numpy")
    except StopIteration:
        if numpy_in_sitepackages:
            msg = "'numpy' not in array_api entry points"
            raise AssertionError(msg) from None
        return

    if ep.value == 'numpy.array_api':
        # Looks like the entrypoint for the current numpy build isn't
        # installed, but an older numpy is also installed and hence the
        # entrypoint is pointing to the old (no longer existing) location.
        # This isn't a problem except for when running tests with `spin` or an
        # in-place build.
        return

    xp = ep.load()
    msg = (
        f"numpy entry point value '{ep.value}' "
        "does not point to our Array API implementation"
    )
    assert xp is numpy, msg


def test_main_namespace_all_dir_coherence():
    """
    Checks if `dir(np)` and `np.__all__` are consistent and return
    the same content, excluding exceptions and private members.
    """
    def _remove_private_members(member_set):
        return {m for m in member_set if not m.startswith('_')}

    def _remove_exceptions(member_set):
        return member_set.difference({
            "bool"  # included only in __dir__
        })

    all_members = _remove_private_members(np.__all__)
    all_members = _remove_exceptions(all_members)

    dir_members = _remove_private_members(np.__dir__())
    dir_members = _remove_exceptions(dir_members)

    assert all_members == dir_members, (
        "Members that break symmetry: "
        f"{all_members.symmetric_difference(dir_members)}"
    )


@pytest.mark.filterwarnings(
    r"ignore:numpy.core(\.\w+)? is deprecated:DeprecationWarning"
)
def test_core_shims_coherence():
    """
    Check that all "semi-public" members of `numpy._core` are also accessible
    from `numpy.core` shims.
    """
    import numpy.core as core

    for member_name in dir(np._core):
        # Skip private and test members. Also if a module is aliased,
        # no need to add it to np.core
        if (
            member_name.startswith("_")
            or member_name in ["tests", "strings"]
            or f"numpy.{member_name}" in PUBLIC_ALIASED_MODULES
        ):
            continue

        member = getattr(np._core, member_name)

        # np.core is a shim and all submodules of np.core are shims
        # but we should be able to import everything in those shims
        # that are available in the "real" modules in np._core
        if inspect.ismodule(member):
            submodule = member
            submodule_name = member_name
            for submodule_member_name in dir(submodule):
                # ignore dunder names
                if submodule_member_name.startswith("__"):
                    continue
                submodule_member = getattr(submodule, submodule_member_name)

                core_submodule = __import__(
                    f"numpy.core.{submodule_name}",
                    fromlist=[submodule_member_name]
                )

                assert submodule_member is getattr(
                    core_submodule, submodule_member_name
                )

        else:
            assert member is getattr(core, member_name)


def test_functions_single_location():
    """
    Check that each public function is available from one location only.

    Test performs BFS search traversing NumPy's public API. It flags
    any function-like object that is accessible from more that one place.
    """
    from typing import Any, Callable, Dict, List, Set, Tuple
    from numpy._core._multiarray_umath import (
        _ArrayFunctionDispatcher as dispatched_function
    )

    visited_modules: Set[types.ModuleType] = {np}
    visited_functions: Set[Callable[..., Any]] = set()
    # Functions often have `__name__` overridden, therefore we need
    # to keep track of locations where functions have been found.
    functions_original_paths: Dict[Callable[..., Any], str] = dict()

    # Here we aggregate functions with more than one location.
    # It must be empty for the test to pass.
    duplicated_functions: List[Tuple] = []

    modules_queue = [np]

    while len(modules_queue) > 0:

        module = modules_queue.pop()

        for member_name in dir(module):
            member = getattr(module, member_name)

            # first check if we got a module
            if (
                inspect.ismodule(member) and  # it's a module
                "numpy" in member.__name__ and  # inside NumPy
                not member_name.startswith("_") and  # not private
                "numpy._core" not in member.__name__ and  # outside _core
                # not a legacy or testing module
                member_name not in ["f2py", "ma", "testing", "tests"] and
                member not in visited_modules  # not visited yet
            ):
                modules_queue.append(member)
                visited_modules.add(member)

            # else check if we got a function-like object
            elif (
                inspect.isfunction(member) or
                isinstance(member, (dispatched_function, np.ufunc))
            ):
                if member in visited_functions:

                    # skip main namespace functions with aliases
                    if (
                        member.__name__ in [
                            "absolute",  # np.abs
                            "arccos",  # np.acos
                            "arccosh",  # np.acosh
                            "arcsin",  # np.asin
                            "arcsinh",  # np.asinh
                            "arctan",  # np.atan
                            "arctan2",  # np.atan2
                            "arctanh",  # np.atanh
                            "left_shift",  # np.bitwise_left_shift
                            "right_shift",  # np.bitwise_right_shift
                            "conjugate",  # np.conj
                            "invert",  # np.bitwise_not & np.bitwise_invert
                            "remainder",  # np.mod
                            "divide",  # np.true_divide
                            "concatenate",  # np.concat
                            "power",  # np.pow
                            "transpose",  # np.permute_dims
                        ] and
                        module.__name__ == "numpy"
                    ):
                        continue
                    # skip trimcoef from numpy.polynomial as it is
                    # duplicated by design.
                    if (
                        member.__name__ == "trimcoef" and
                        module.__name__.startswith("numpy.polynomial")
                    ):
                        continue

                    # skip ufuncs that are exported in np.strings as well
                    if member.__name__ in (
                        "add",
                        "equal",
                        "not_equal",
                        "greater",
                        "greater_equal",
                        "less",
                        "less_equal",
                    ) and module.__name__ == "numpy.strings":
                        continue

                    # numpy.char reexports all numpy.strings functions for
                    # backwards-compatibility
                    if module.__name__ == "numpy.char":
                        continue

                    # function is present in more than one location!
                    duplicated_functions.append(
                        (member.__name__,
                         module.__name__,
                         functions_original_paths[member])
                    )
                else:
                    visited_functions.add(member)
                    functions_original_paths[member] = module.__name__

    del visited_functions, visited_modules, functions_original_paths

    assert len(duplicated_functions) == 0, duplicated_functions


def test___module__attribute():
    modules_queue = [np]
    visited_modules = {np}
    visited_functions = set()
    incorrect_entries = []

    while len(modules_queue) > 0:
        module = modules_queue.pop()
        for member_name in dir(module):
            member = getattr(module, member_name)
            # first check if we got a module
            if (
                inspect.ismodule(member) and  # it's a module
                "numpy" in member.__name__ and  # inside NumPy
                not member_name.startswith("_") and  # not private
                "numpy._core" not in member.__name__ and  # outside _core
                # not in a skip module list
                member_name not in [
                    "char", "core", "ctypeslib", "f2py", "ma", "lapack_lite",
                    "mrecords", "testing", "tests", "polynomial", "typing",
                    "random",  # cython disallows overriding __module__
                ] and
                member not in visited_modules  # not visited yet
            ):
                modules_queue.append(member)
                visited_modules.add(member)
            elif (
                not inspect.ismodule(member) and
                hasattr(member, "__name__") and
                not member.__name__.startswith("_") and
                member.__module__ != module.__name__ and
                member not in visited_functions
            ):
                # skip ufuncs that are exported in np.strings as well
                if member.__name__ in (
                    "add", "equal", "not_equal", "greater", "greater_equal",
                    "less", "less_equal",
                ) and module.__name__ == "numpy.strings":
                    continue

                # recarray and record are exported in np and np.rec
                if (
                    (member.__name__ == "recarray" and module.__name__ == "numpy") or
                    (member.__name__ == "record" and module.__name__ == "numpy.rec")
                ):
                    continue

                incorrect_entries.append(
                    dict(
                        Func=member.__name__,
                        actual=member.__module__,
                        expected=module.__name__,
                    )
                )
                visited_functions.add(member)

    if incorrect_entries:
        assert len(incorrect_entries) == 0, incorrect_entries
Metadata
View Raw File