"""
Test the scalar constructors, which also do type-coercion
"""
import fractions
import platform
import types
from typing import Any, Type
import pytest
import numpy as np
from numpy._core import sctypes
from numpy.testing import assert_equal, assert_raises, IS_MUSL
class TestAsIntegerRatio:
# derived in part from the cpython test "test_floatasratio"
@pytest.mark.parametrize("ftype", [
np.half, np.single, np.double, np.longdouble])
@pytest.mark.parametrize("f, ratio", [
(0.875, (7, 8)),
(-0.875, (-7, 8)),
(0.0, (0, 1)),
(11.5, (23, 2)),
])
def test_small(self, ftype, f, ratio):
assert_equal(ftype(f).as_integer_ratio(), ratio)
@pytest.mark.parametrize("ftype", [
np.half, np.single, np.double, np.longdouble])
def test_simple_fractions(self, ftype):
R = fractions.Fraction
assert_equal(R(0, 1),
R(*ftype(0.0).as_integer_ratio()))
assert_equal(R(5, 2),
R(*ftype(2.5).as_integer_ratio()))
assert_equal(R(1, 2),
R(*ftype(0.5).as_integer_ratio()))
assert_equal(R(-2100, 1),
R(*ftype(-2100.0).as_integer_ratio()))
@pytest.mark.parametrize("ftype", [
np.half, np.single, np.double, np.longdouble])
def test_errors(self, ftype):
assert_raises(OverflowError, ftype('inf').as_integer_ratio)
assert_raises(OverflowError, ftype('-inf').as_integer_ratio)
assert_raises(ValueError, ftype('nan').as_integer_ratio)
def test_against_known_values(self):
R = fractions.Fraction
assert_equal(R(1075, 512),
R(*np.half(2.1).as_integer_ratio()))
assert_equal(R(-1075, 512),
R(*np.half(-2.1).as_integer_ratio()))
assert_equal(R(4404019, 2097152),
R(*np.single(2.1).as_integer_ratio()))
assert_equal(R(-4404019, 2097152),
R(*np.single(-2.1).as_integer_ratio()))
assert_equal(R(4728779608739021, 2251799813685248),
R(*np.double(2.1).as_integer_ratio()))
assert_equal(R(-4728779608739021, 2251799813685248),
R(*np.double(-2.1).as_integer_ratio()))
# longdouble is platform dependent
@pytest.mark.parametrize("ftype, frac_vals, exp_vals", [
# dtype test cases generated using hypothesis
# first five generated cases per dtype
(np.half, [0.0, 0.01154830649280303, 0.31082276347447274,
0.527350517124794, 0.8308562335072596],
[0, 1, 0, -8, 12]),
(np.single, [0.0, 0.09248576989263226, 0.8160498218131407,
0.17389442853722373, 0.7956044195067877],
[0, 12, 10, 17, -26]),
(np.double, [0.0, 0.031066908499895136, 0.5214135908877832,
0.45780736035689296, 0.5906586745934036],
[0, -801, 51, 194, -653]),
pytest.param(
np.longdouble,
[0.0, 0.20492557202724854, 0.4277180662199366, 0.9888085019891495,
0.9620175814461964],
[0, -7400, 14266, -7822, -8721],
marks=[
pytest.mark.skipif(
np.finfo(np.double) == np.finfo(np.longdouble),
reason="long double is same as double"),
pytest.mark.skipif(
platform.machine().startswith("ppc"),
reason="IBM double double"),
]
)
])
def test_roundtrip(self, ftype, frac_vals, exp_vals):
for frac, exp in zip(frac_vals, exp_vals):
f = np.ldexp(ftype(frac), exp)
assert f.dtype == ftype
n, d = f.as_integer_ratio()
try:
nf = np.longdouble(n)
df = np.longdouble(d)
if not np.isfinite(df):
raise OverflowError
except (OverflowError, RuntimeWarning):
# the values may not fit in any float type
pytest.skip("longdouble too small on this platform")
assert_equal(nf / df, f, "{}/{}".format(n, d))
class TestIsInteger:
@pytest.mark.parametrize("str_value", ["inf", "nan"])
@pytest.mark.parametrize("code", np.typecodes["Float"])
def test_special(self, code: str, str_value: str) -> None:
cls = np.dtype(code).type
value = cls(str_value)
assert not value.is_integer()
@pytest.mark.parametrize(
"code", np.typecodes["Float"] + np.typecodes["AllInteger"]
)
def test_true(self, code: str) -> None:
float_array = np.arange(-5, 5).astype(code)
for value in float_array:
assert value.is_integer()
@pytest.mark.parametrize("code", np.typecodes["Float"])
def test_false(self, code: str) -> None:
float_array = np.arange(-5, 5).astype(code)
float_array *= 1.1
for value in float_array:
if value == 0:
continue
assert not value.is_integer()
class TestClassGetItem:
@pytest.mark.parametrize("cls", [
np.number,
np.integer,
np.inexact,
np.unsignedinteger,
np.signedinteger,
np.floating,
])
def test_abc(self, cls: Type[np.number]) -> None:
alias = cls[Any]
assert isinstance(alias, types.GenericAlias)
assert alias.__origin__ is cls
def test_abc_complexfloating(self) -> None:
alias = np.complexfloating[Any, Any]
assert isinstance(alias, types.GenericAlias)
assert alias.__origin__ is np.complexfloating
@pytest.mark.parametrize("arg_len", range(4))
def test_abc_complexfloating_subscript_tuple(self, arg_len: int) -> None:
arg_tup = (Any,) * arg_len
if arg_len in (1, 2):
assert np.complexfloating[arg_tup]
else:
match = f"Too {'few' if arg_len == 0 else 'many'} arguments"
with pytest.raises(TypeError, match=match):
np.complexfloating[arg_tup]
@pytest.mark.parametrize("cls", [np.generic, np.flexible, np.character])
def test_abc_non_numeric(self, cls: Type[np.generic]) -> None:
with pytest.raises(TypeError):
cls[Any]
@pytest.mark.parametrize("code", np.typecodes["All"])
def test_concrete(self, code: str) -> None:
cls = np.dtype(code).type
with pytest.raises(TypeError):
cls[Any]
@pytest.mark.parametrize("arg_len", range(4))
def test_subscript_tuple(self, arg_len: int) -> None:
arg_tup = (Any,) * arg_len
if arg_len == 1:
assert np.number[arg_tup]
else:
with pytest.raises(TypeError):
np.number[arg_tup]
def test_subscript_scalar(self) -> None:
assert np.number[Any]
class TestBitCount:
# derived in part from the cpython test "test_bit_count"
@pytest.mark.parametrize("itype", sctypes['int']+sctypes['uint'])
def test_small(self, itype):
for a in range(max(np.iinfo(itype).min, 0), 128):
msg = f"Smoke test for {itype}({a}).bit_count()"
assert itype(a).bit_count() == bin(a).count("1"), msg
def test_bit_count(self):
for exp in [10, 17, 63]:
a = 2**exp
assert np.uint64(a).bit_count() == 1
assert np.uint64(a - 1).bit_count() == exp
assert np.uint64(a ^ 63).bit_count() == 7
assert np.uint64((a - 1) ^ 510).bit_count() == exp - 8
class TestDevice:
"""
Test scalar.device attribute and scalar.to_device() method.
"""
scalars = [np.bool(True), np.int64(1), np.uint64(1), np.float64(1.0),
np.complex128(1+1j)]
@pytest.mark.parametrize("scalar", scalars)
def test_device(self, scalar):
assert scalar.device == "cpu"
@pytest.mark.parametrize("scalar", scalars)
def test_to_device(self, scalar):
assert scalar.to_device("cpu") is scalar
@pytest.mark.parametrize("scalar", scalars)
def test___array_namespace__(self, scalar):
assert scalar.__array_namespace__() is np
@pytest.mark.parametrize("scalar", [np.bool(True), np.int8(1), np.float64(1)])
def test_array_wrap(scalar):
# Test scalars array wrap as long as it exists. NumPy itself should
# probably not use it, so it may not be necessary to keep it around.
arr0d = np.array(3, dtype=np.int8)
# Third argument not passed, None, or True "decays" to scalar.
# (I don't think NumPy would pass `None`, but it seems clear to support)
assert type(scalar.__array_wrap__(arr0d)) is np.int8
assert type(scalar.__array_wrap__(arr0d, None, None)) is np.int8
assert type(scalar.__array_wrap__(arr0d, None, True)) is np.int8
# Otherwise, result should be the input
assert scalar.__array_wrap__(arr0d, None, False) is arr0d
# An old bug. A non 0-d array cannot be converted to scalar:
arr1d = np.array([3], dtype=np.int8)
assert scalar.__array_wrap__(arr1d) is arr1d
assert scalar.__array_wrap__(arr1d, None, True) is arr1d