import builtins
import sys
import mmap
import ctypes as ct
import array as _array
import datetime as dt
import enum
from abc import abstractmethod
from types import EllipsisType, ModuleType, TracebackType, MappingProxyType, GenericAlias
from decimal import Decimal
from fractions import Fraction
from uuid import UUID
import numpy as np
from numpy.__config__ import show as show_config
from numpy._pytesttester import PytestTester
from numpy._core._internal import _ctypes
from numpy._typing import (
# Arrays
ArrayLike,
NDArray,
_SupportsArray,
_NestedSequence,
_FiniteNestedSequence,
_ArrayLikeBool_co,
_ArrayLikeUInt_co,
_ArrayLikeInt,
_ArrayLikeInt_co,
_ArrayLikeFloat_co,
_ArrayLikeComplex_co,
_ArrayLikeNumber_co,
_ArrayLikeTD64_co,
_ArrayLikeDT64_co,
_ArrayLikeObject_co,
# DTypes
DTypeLike,
_DTypeLike,
_DTypeLikeVoid,
_VoidDTypeLike,
# Shapes
_Shape,
_ShapeLike,
# Scalars
_CharLike_co,
_IntLike_co,
_FloatLike_co,
_TD64Like_co,
_NumberLike_co,
_ScalarLike_co,
# `number` precision
NBitBase,
# NOTE: Do not remove the extended precision bit-types even if seemingly unused;
# they're used by the mypy plugin
_256Bit,
_128Bit,
_96Bit,
_80Bit,
_64Bit,
_32Bit,
_16Bit,
_8Bit,
_NBitByte,
_NBitShort,
_NBitIntC,
_NBitIntP,
_NBitLong,
_NBitLongLong,
_NBitHalf,
_NBitSingle,
_NBitDouble,
_NBitLongDouble,
# Character codes
_BoolCodes,
_UInt8Codes,
_UInt16Codes,
_UInt32Codes,
_UInt64Codes,
_Int8Codes,
_Int16Codes,
_Int32Codes,
_Int64Codes,
_Float16Codes,
_Float32Codes,
_Float64Codes,
_Complex64Codes,
_Complex128Codes,
_ByteCodes,
_ShortCodes,
_IntCCodes,
_IntPCodes,
_LongCodes,
_LongLongCodes,
_UByteCodes,
_UShortCodes,
_UIntCCodes,
_UIntPCodes,
_ULongCodes,
_ULongLongCodes,
_HalfCodes,
_SingleCodes,
_DoubleCodes,
_LongDoubleCodes,
_CSingleCodes,
_CDoubleCodes,
_CLongDoubleCodes,
_DT64Codes,
_TD64Codes,
_StrCodes,
_BytesCodes,
_VoidCodes,
_ObjectCodes,
_StringCodes,
_UnsignedIntegerCodes,
_SignedIntegerCodes,
_IntegerCodes,
_FloatingCodes,
_ComplexFloatingCodes,
_InexactCodes,
_NumberCodes,
_CharacterCodes,
_FlexibleCodes,
_GenericCodes,
# Ufuncs
_UFunc_Nin1_Nout1,
_UFunc_Nin2_Nout1,
_UFunc_Nin1_Nout2,
_UFunc_Nin2_Nout2,
_GUFunc_Nin2_Nout1,
)
from numpy._typing._callable import (
_BoolOp,
_BoolBitOp,
_BoolSub,
_BoolTrueDiv,
_BoolMod,
_BoolDivMod,
_IntTrueDiv,
_UnsignedIntOp,
_UnsignedIntBitOp,
_UnsignedIntMod,
_UnsignedIntDivMod,
_SignedIntOp,
_SignedIntBitOp,
_SignedIntMod,
_SignedIntDivMod,
_FloatOp,
_FloatMod,
_FloatDivMod,
_NumberOp,
_ComparisonOpLT,
_ComparisonOpLE,
_ComparisonOpGT,
_ComparisonOpGE,
)
# NOTE: Numpy's mypy plugin is used for removing the types unavailable
# to the specific platform
from numpy._typing._extended_precision import (
uint128,
uint256,
int128,
int256,
float80,
float96,
float128,
float256,
complex160,
complex192,
complex256,
complex512,
)
from numpy._array_api_info import __array_namespace_info__
from collections.abc import (
Callable,
Iterable,
Iterator,
Mapping,
Sequence,
)
if sys.version_info >= (3, 12):
from collections.abc import Buffer as _SupportsBuffer
else:
_SupportsBuffer: TypeAlias = (
bytes
| bytearray
| memoryview
| _array.array[Any]
| mmap.mmap
| NDArray[Any]
| generic
)
from typing import (
Literal as L,
Any,
NoReturn,
SupportsComplex,
SupportsFloat,
SupportsInt,
SupportsIndex,
Final,
final,
ClassVar,
TypeAlias,
type_check_only,
)
# NOTE: `typing_extensions` and `_typeshed` are always available in `.pyi` stubs, even
# if not available at runtime. This is because the `typeshed` stubs for the standard
# library include `typing_extensions` stubs:
# https://github.com/python/typeshed/blob/main/stdlib/typing_extensions.pyi
from _typeshed import StrOrBytesPath, SupportsFlush, SupportsLenAndGetItem, SupportsWrite
from typing_extensions import CapsuleType, Generic, LiteralString, Never, Protocol, Self, TypeVar, Unpack, deprecated, overload
from numpy import (
core,
ctypeslib,
exceptions,
f2py,
fft,
lib,
linalg,
ma,
polynomial,
random,
testing,
typing,
version,
dtypes,
rec,
char,
strings,
)
from numpy._core.records import (
record,
recarray,
)
from numpy._core.function_base import (
linspace,
logspace,
geomspace,
)
from numpy._core.fromnumeric import (
take,
reshape,
choose,
repeat,
put,
swapaxes,
transpose,
matrix_transpose,
partition,
argpartition,
sort,
argsort,
argmax,
argmin,
searchsorted,
resize,
squeeze,
diagonal,
trace,
ravel,
nonzero,
shape,
compress,
clip,
sum,
all,
any,
cumsum,
cumulative_sum,
ptp,
max,
min,
amax,
amin,
prod,
cumprod,
cumulative_prod,
ndim,
size,
around,
round,
mean,
std,
var,
)
from numpy._core._asarray import (
require,
)
from numpy._core._type_aliases import (
sctypeDict,
)
from numpy._core._ufunc_config import (
seterr,
geterr,
setbufsize,
getbufsize,
seterrcall,
geterrcall,
_ErrKind,
_ErrCall,
)
from numpy._core.arrayprint import (
set_printoptions,
get_printoptions,
array2string,
format_float_scientific,
format_float_positional,
array_repr,
array_str,
printoptions,
)
from numpy._core.einsumfunc import (
einsum,
einsum_path,
)
from numpy._core.multiarray import (
array,
empty_like,
empty,
zeros,
concatenate,
inner,
where,
lexsort,
can_cast,
min_scalar_type,
result_type,
dot,
vdot,
bincount,
copyto,
putmask,
packbits,
unpackbits,
shares_memory,
may_share_memory,
asarray,
asanyarray,
ascontiguousarray,
asfortranarray,
arange,
busday_count,
busday_offset,
datetime_as_string,
datetime_data,
frombuffer,
fromfile,
fromiter,
is_busday,
promote_types,
fromstring,
frompyfunc,
nested_iters,
flagsobj,
)
from numpy._core.numeric import (
zeros_like,
ones,
ones_like,
full,
full_like,
count_nonzero,
isfortran,
argwhere,
flatnonzero,
correlate,
convolve,
outer,
tensordot,
roll,
rollaxis,
moveaxis,
cross,
indices,
fromfunction,
isscalar,
binary_repr,
base_repr,
identity,
allclose,
isclose,
array_equal,
array_equiv,
astype,
)
from numpy._core.numerictypes import (
isdtype,
issubdtype,
ScalarType,
typecodes,
)
from numpy._core.shape_base import (
atleast_1d,
atleast_2d,
atleast_3d,
block,
hstack,
stack,
vstack,
unstack,
)
from numpy.lib import (
scimath as emath,
)
from numpy.lib._arraypad_impl import (
pad,
)
from numpy.lib._arraysetops_impl import (
ediff1d,
intersect1d,
isin,
setdiff1d,
setxor1d,
union1d,
unique,
unique_all,
unique_counts,
unique_inverse,
unique_values,
)
from numpy.lib._function_base_impl import (
select,
piecewise,
trim_zeros,
copy,
iterable,
percentile,
diff,
gradient,
angle,
unwrap,
sort_complex,
flip,
rot90,
extract,
place,
asarray_chkfinite,
average,
bincount,
digitize,
cov,
corrcoef,
median,
sinc,
hamming,
hanning,
bartlett,
blackman,
kaiser,
i0,
meshgrid,
delete,
insert,
append,
interp,
quantile,
trapezoid,
)
from numpy.lib._histograms_impl import (
histogram_bin_edges,
histogram,
histogramdd,
)
from numpy.lib._index_tricks_impl import (
ravel_multi_index,
unravel_index,
mgrid,
ogrid,
r_,
c_,
s_,
index_exp,
ix_,
fill_diagonal,
diag_indices,
diag_indices_from,
)
from numpy.lib._nanfunctions_impl import (
nansum,
nanmax,
nanmin,
nanargmax,
nanargmin,
nanmean,
nanmedian,
nanpercentile,
nanvar,
nanstd,
nanprod,
nancumsum,
nancumprod,
nanquantile,
)
from numpy.lib._npyio_impl import (
savetxt,
loadtxt,
genfromtxt,
load,
save,
savez,
savez_compressed,
packbits,
unpackbits,
fromregex,
)
from numpy.lib._polynomial_impl import (
poly,
roots,
polyint,
polyder,
polyadd,
polysub,
polymul,
polydiv,
polyval,
polyfit,
)
from numpy.lib._shape_base_impl import (
column_stack,
dstack,
array_split,
split,
hsplit,
vsplit,
dsplit,
apply_over_axes,
expand_dims,
apply_along_axis,
kron,
tile,
take_along_axis,
put_along_axis,
)
from numpy.lib._stride_tricks_impl import (
broadcast_to,
broadcast_arrays,
broadcast_shapes,
)
from numpy.lib._twodim_base_impl import (
diag,
diagflat,
eye,
fliplr,
flipud,
tri,
triu,
tril,
vander,
histogram2d,
mask_indices,
tril_indices,
tril_indices_from,
triu_indices,
triu_indices_from,
)
from numpy.lib._type_check_impl import (
mintypecode,
real,
imag,
iscomplex,
isreal,
iscomplexobj,
isrealobj,
nan_to_num,
real_if_close,
typename,
common_type,
)
from numpy.lib._ufunclike_impl import (
fix,
isposinf,
isneginf,
)
from numpy.lib._utils_impl import (
get_include,
info,
show_runtime,
)
from numpy.matrixlib import (
asmatrix,
bmat,
)
__all__ = [
"emath", "show_config", "version", "__version__", "__array_namespace_info__",
# __numpy_submodules__
"linalg", "fft", "dtypes", "random", "polynomial", "ma", "exceptions", "lib",
"ctypeslib", "testing", "test", "rec", "char", "strings",
"core", "typing", "f2py",
# _core.__all__
"abs", "acos", "acosh", "asin", "asinh", "atan", "atanh", "atan2", "bitwise_invert",
"bitwise_left_shift", "bitwise_right_shift", "concat", "pow", "permute_dims",
"memmap", "sctypeDict", "record", "recarray",
# _core.numeric.__all__
"newaxis", "ndarray", "flatiter", "nditer", "nested_iters", "ufunc", "arange",
"array", "asarray", "asanyarray", "ascontiguousarray", "asfortranarray", "zeros",
"count_nonzero", "empty", "broadcast", "dtype", "fromstring", "fromfile",
"frombuffer", "from_dlpack", "where", "argwhere", "copyto", "concatenate",
"lexsort", "astype", "can_cast", "promote_types", "min_scalar_type", "result_type",
"isfortran", "empty_like", "zeros_like", "ones_like", "correlate", "convolve",
"inner", "dot", "outer", "vdot", "roll", "rollaxis", "moveaxis", "cross",
"tensordot", "little_endian", "fromiter", "array_equal", "array_equiv", "indices",
"fromfunction", "isclose", "isscalar", "binary_repr", "base_repr", "ones",
"identity", "allclose", "putmask", "flatnonzero", "inf", "nan", "False_", "True_",
"bitwise_not", "full", "full_like", "matmul", "vecdot", "shares_memory",
"may_share_memory", "_get_promotion_state", "_set_promotion_state",
"all", "amax", "amin", "any", "argmax", "argmin", "argpartition", "argsort",
"around", "choose", "clip", "compress", "cumprod", "cumsum", "cumulative_prod",
"cumulative_sum", "diagonal", "mean", "max", "min", "matrix_transpose", "ndim",
"nonzero", "partition", "prod", "ptp", "put", "ravel", "repeat", "reshape",
"resize", "round", "searchsorted", "shape", "size", "sort", "squeeze", "std", "sum",
"swapaxes", "take", "trace", "transpose", "var",
"absolute", "add", "arccos", "arccosh", "arcsin", "arcsinh", "arctan", "arctan2",
"arctanh", "bitwise_and", "bitwise_or", "bitwise_xor", "cbrt", "ceil", "conj",
"conjugate", "copysign", "cos", "cosh", "bitwise_count", "deg2rad", "degrees",
"divide", "divmod", "e", "equal", "euler_gamma", "exp", "exp2", "expm1", "fabs",
"floor", "floor_divide", "float_power", "fmax", "fmin", "fmod", "frexp",
"frompyfunc", "gcd", "greater", "greater_equal", "heaviside", "hypot", "invert",
"isfinite", "isinf", "isnan", "isnat", "lcm", "ldexp", "left_shift", "less",
"less_equal", "log", "log10", "log1p", "log2", "logaddexp", "logaddexp2",
"logical_and", "logical_not", "logical_or", "logical_xor", "maximum", "minimum",
"mod", "modf", "multiply", "negative", "nextafter", "not_equal", "pi", "positive",
"power", "rad2deg", "radians", "reciprocal", "remainder", "right_shift", "rint",
"sign", "signbit", "sin", "sinh", "spacing", "sqrt", "square", "subtract", "tan",
"tanh", "true_divide", "trunc", "ScalarType", "typecodes", "issubdtype",
"datetime_data", "datetime_as_string", "busday_offset", "busday_count", "is_busday",
"busdaycalendar", "isdtype",
"complexfloating", "character", "unsignedinteger", "inexact", "generic", "floating",
"integer", "signedinteger", "number", "flexible", "bool", "float16", "float32",
"float64", "longdouble", "complex64", "complex128", "clongdouble",
"bytes_", "str_", "void", "object_", "datetime64", "timedelta64", "int8", "byte",
"uint8", "ubyte", "int16", "short", "uint16", "ushort", "int32", "intc", "uint32",
"uintc", "int64", "long", "uint64", "ulong", "longlong", "ulonglong", "intp",
"uintp", "double", "cdouble", "single", "csingle", "half", "bool_", "int_", "uint",
"uint128", "uint256", "int128", "int256", "float80", "float96", "float128",
"float256", "complex160", "complex192", "complex256", "complex512",
"array2string", "array_str", "array_repr", "set_printoptions", "get_printoptions",
"printoptions", "format_float_positional", "format_float_scientific", "require",
"seterr", "geterr", "setbufsize", "getbufsize", "seterrcall", "geterrcall",
"errstate", "_no_nep50_warning",
# _core.function_base.__all__
"logspace", "linspace", "geomspace",
# _core.getlimits.__all__
"finfo", "iinfo",
# _core.shape_base.__all__
"atleast_1d", "atleast_2d", "atleast_3d", "block", "hstack", "stack", "unstack",
"vstack",
# _core.einsumfunc.__all__
"einsum", "einsum_path",
# lib._histograms_impl.__all__
"histogram", "histogramdd", "histogram_bin_edges",
# lib._nanfunctions_impl.__all__
"nansum", "nanmax", "nanmin", "nanargmax", "nanargmin", "nanmean", "nanmedian",
"nanpercentile", "nanvar", "nanstd", "nanprod", "nancumsum", "nancumprod",
"nanquantile",
# lib._function_base_impl.__all__
# NOTE: `trapz` is omitted because it is deprecated
"select", "piecewise", "trim_zeros", "copy", "iterable", "percentile", "diff",
"gradient", "angle", "unwrap", "sort_complex", "flip", "rot90", "extract", "place",
"vectorize", "asarray_chkfinite", "average", "bincount", "digitize", "cov",
"corrcoef", "median", "sinc", "hamming", "hanning", "bartlett", "blackman",
"kaiser", "i0", "meshgrid", "delete", "insert", "append", "interp", "quantile",
"trapezoid",
# lib._twodim_base_impl.__all__
"diag", "diagflat", "eye", "fliplr", "flipud", "tri", "triu", "tril", "vander",
"histogram2d", "mask_indices", "tril_indices", "tril_indices_from", "triu_indices",
"triu_indices_from",
# lib._shape_base_impl.__all__
# NOTE: `row_stack` is omitted because it is deprecated
"column_stack", "dstack", "array_split", "split", "hsplit", "vsplit", "dsplit",
"apply_over_axes", "expand_dims", "apply_along_axis", "kron", "tile",
"take_along_axis", "put_along_axis",
# lib._type_check_impl.__all__
"iscomplexobj", "isrealobj", "imag", "iscomplex", "isreal", "nan_to_num", "real",
"real_if_close", "typename", "mintypecode", "common_type",
# lib._arraysetops_impl.__all__
# NOTE: `in1d` is omitted because it is deprecated
"ediff1d", "intersect1d", "isin", "setdiff1d", "setxor1d", "union1d", "unique",
"unique_all", "unique_counts", "unique_inverse", "unique_values",
# lib._ufunclike_impl.__all__
"fix", "isneginf", "isposinf",
# lib._arraypad_impl.__all__
"pad",
# lib._utils_impl.__all__
"get_include", "info", "show_runtime",
# lib._stride_tricks_impl.__all__
"broadcast_to", "broadcast_arrays", "broadcast_shapes",
# lib._polynomial_impl.__all__
"poly", "roots", "polyint", "polyder", "polyadd", "polysub", "polymul", "polydiv",
"polyval", "poly1d", "polyfit",
# lib._npyio_impl.__all__
"savetxt", "loadtxt", "genfromtxt", "load", "save", "savez", "savez_compressed",
"packbits", "unpackbits", "fromregex",
# lib._index_tricks_impl.__all__
"ravel_multi_index", "unravel_index", "mgrid", "ogrid", "r_", "c_", "s_",
"index_exp", "ix_", "ndenumerate", "ndindex", "fill_diagonal", "diag_indices",
"diag_indices_from",
# matrixlib.__all__
"matrix", "bmat", "asmatrix",
]
### Constrained types (for internal use only)
# Only use these for functions; never as generic type parameter.
_AnyStr = TypeVar("_AnyStr", LiteralString, str, bytes)
_AnyShapeType = TypeVar(
"_AnyShapeType",
tuple[()], # 0-d
tuple[int], # 1-d
tuple[int, int], # 2-d
tuple[int, int, int], # 3-d
tuple[int, int, int, int], # 4-d
tuple[int, int, int, int, int], # 5-d
tuple[int, int, int, int, int, int], # 6-d
tuple[int, int, int, int, int, int, int], # 7-d
tuple[int, int, int, int, int, int, int, int], # 8-d
tuple[int, ...], # N-d
)
_AnyNBitInexact = TypeVar("_AnyNBitInexact", _NBitHalf, _NBitSingle, _NBitDouble, _NBitLongDouble)
_AnyTD64Item = TypeVar("_AnyTD64Item", dt.timedelta, int, None, dt.timedelta | int | None)
_AnyDT64Arg = TypeVar("_AnyDT64Arg", dt.datetime, dt.date, None)
_AnyDT64Item = TypeVar("_AnyDT64Item", dt.datetime, dt.date, int, None, dt.date, int | None)
_AnyDate = TypeVar("_AnyDate", dt.date, dt.datetime)
_AnyDateOrTime = TypeVar("_AnyDateOrTime", dt.date, dt.datetime, dt.timedelta)
### Type parameters (for internal use only)
_T = TypeVar("_T")
_T_co = TypeVar("_T_co", covariant=True)
_T_contra = TypeVar("_T_contra", contravariant=True)
_RealT_co = TypeVar("_RealT_co", covariant=True)
_ImagT_co = TypeVar("_ImagT_co", covariant=True)
_CallableT = TypeVar("_CallableT", bound=Callable[..., object])
_DType = TypeVar("_DType", bound=dtype[Any])
_DType_co = TypeVar("_DType_co", bound=dtype[Any], covariant=True)
_FlexDType = TypeVar("_FlexDType", bound=dtype[flexible])
_ArrayT = TypeVar("_ArrayT", bound=NDArray[Any])
_ArrayT_co = TypeVar("_ArrayT_co", bound=NDArray[Any], covariant=True)
_IntegralArrayT = TypeVar("_IntegralArrayT", bound=NDArray[integer[Any] | np.bool | object_])
_RealArrayT = TypeVar("_RealArrayT", bound=NDArray[floating[Any] | integer[Any] | timedelta64 | np.bool | object_])
_NumericArrayT = TypeVar("_NumericArrayT", bound=NDArray[number[Any] | timedelta64 | object_])
_ShapeT = TypeVar("_ShapeT", bound=_Shape)
_ShapeT_co = TypeVar("_ShapeT_co", bound=_Shape, covariant=True)
_1DShapeT = TypeVar("_1DShapeT", bound=_1D)
_2DShapeT_co = TypeVar("_2DShapeT_co", bound=_2D, covariant=True)
_1NShapeT = TypeVar("_1NShapeT", bound=tuple[L[1], Unpack[tuple[L[1], ...]]]) # (1,) | (1, 1) | (1, 1, 1) | ...
_SCT = TypeVar("_SCT", bound=generic)
_SCT_co = TypeVar("_SCT_co", bound=generic, covariant=True)
_NumberT = TypeVar("_NumberT", bound=number[Any])
_FloatingT_co = TypeVar("_FloatingT_co", bound=floating[Any], default=floating[Any], covariant=True)
_IntegerT = TypeVar("_IntegerT", bound=integer)
_IntegerT_co = TypeVar("_IntegerT_co", bound=integer[Any], default=integer[Any], covariant=True)
_NBit = TypeVar("_NBit", bound=NBitBase, default=Any)
_NBit1 = TypeVar("_NBit1", bound=NBitBase, default=Any)
_NBit2 = TypeVar("_NBit2", bound=NBitBase, default=_NBit1)
_ItemT_co = TypeVar("_ItemT_co", default=Any, covariant=True)
_BoolItemT = TypeVar("_BoolItemT", bound=builtins.bool)
_BoolItemT_co = TypeVar("_BoolItemT_co", bound=builtins.bool, default=builtins.bool, covariant=True)
_NumberItemT_co = TypeVar("_NumberItemT_co", bound=int | float | complex, default=int | float | complex, covariant=True)
_InexactItemT_co = TypeVar("_InexactItemT_co", bound=float | complex, default=float | complex, covariant=True)
_FlexibleItemT_co = TypeVar(
"_FlexibleItemT_co",
bound=_CharLike_co | tuple[Any, ...],
default=_CharLike_co | tuple[Any, ...],
covariant=True,
)
_CharacterItemT_co = TypeVar("_CharacterItemT_co", bound=_CharLike_co, default=_CharLike_co, covariant=True)
_TD64ItemT_co = TypeVar("_TD64ItemT_co", bound=dt.timedelta | int | None, default=dt.timedelta | int | None, covariant=True)
_DT64ItemT_co = TypeVar("_DT64ItemT_co", bound=dt.date | int | None, default=dt.date | int | None, covariant=True)
_TD64UnitT = TypeVar("_TD64UnitT", bound=_TD64Unit, default=_TD64Unit)
### Type Aliases (for internal use only)
_Falsy: TypeAlias = L[False, 0] | np.bool[L[False]]
_Truthy: TypeAlias = L[True, 1] | np.bool[L[True]]
_1D: TypeAlias = tuple[int]
_2D: TypeAlias = tuple[int, int]
_2Tuple: TypeAlias = tuple[_T, _T]
_ArrayUInt_co: TypeAlias = NDArray[np.bool | unsignedinteger[Any]]
_ArrayInt_co: TypeAlias = NDArray[np.bool | integer[Any]]
_ArrayFloat_co: TypeAlias = NDArray[np.bool | integer[Any] | floating[Any]]
_ArrayComplex_co: TypeAlias = NDArray[np.bool | integer[Any] | floating[Any] | complexfloating[Any, Any]]
_ArrayNumber_co: TypeAlias = NDArray[np.bool | number[Any]]
_ArrayTD64_co: TypeAlias = NDArray[np.bool | integer[Any] | timedelta64]
_Float64_co: TypeAlias = float | floating[_64Bit] | float32 | float16 | integer[Any] | np.bool
_Complex64_co: TypeAlias = number[_32Bit] | number[_16Bit] | number[_8Bit] | builtins.bool | np.bool
_Complex128_co: TypeAlias = complex | number[_64Bit] | _Complex64_co
_ArrayIndexLike: TypeAlias = SupportsIndex | slice | EllipsisType | _ArrayLikeInt_co | None
_UnsignedIntegerCType: TypeAlias = type[
ct.c_uint8 | ct.c_uint16 | ct.c_uint32 | ct.c_uint64
| ct.c_ushort | ct.c_uint | ct.c_ulong | ct.c_ulonglong
| ct.c_size_t | ct.c_void_p
] # fmt: skip
_SignedIntegerCType: TypeAlias = type[
ct.c_int8 | ct.c_int16 | ct.c_int32 | ct.c_int64
| ct.c_short | ct.c_int | ct.c_long | ct.c_longlong
| ct.c_ssize_t
] # fmt: skip
_FloatingCType: TypeAlias = type[ct.c_float | ct.c_double | ct.c_longdouble]
_IntegerCType: TypeAlias = _UnsignedIntegerCType | _SignedIntegerCType
_NumberCType: TypeAlias = _IntegerCType | _IntegerCType
_GenericCType: TypeAlias = _NumberCType | type[ct.c_bool | ct.c_char | ct.py_object[Any]]
# some commonly used builtin types that are known to result in a
# `dtype[object_]`, when their *type* is passed to the `dtype` constructor
# NOTE: `builtins.object` should not be included here
_BuiltinObjectLike: TypeAlias = (
slice | Decimal | Fraction | UUID
| dt.date | dt.time | dt.timedelta | dt.tzinfo
| tuple[Any, ...] | list[Any] | set[Any] | frozenset[Any] | dict[Any, Any]
) # fmt: skip
# Introduce an alias for `dtype` to avoid naming conflicts.
_dtype: TypeAlias = dtype[_SCT]
_ByteOrderChar: TypeAlias = L["<", ">", "=", "|"]
# can be anything, is case-insensitive, and only the first character matters
_ByteOrder: TypeAlias = L[
"S", # swap the current order (default)
"<", "L", "little", # little-endian
">", "B", "big", # big endian
"=", "N", "native", # native order
"|", "I", # ignore
] # fmt: skip
_DTypeKind: TypeAlias = L[
"b", # boolean
"i", # signed integer
"u", # unsigned integer
"f", # floating-point
"c", # complex floating-point
"m", # timedelta64
"M", # datetime64
"O", # python object
"S", # byte-string (fixed-width)
"U", # unicode-string (fixed-width)
"V", # void
"T", # unicode-string (variable-width)
]
_DTypeChar: TypeAlias = L[
"?", # bool
"b", # byte
"B", # ubyte
"h", # short
"H", # ushort
"i", # intc
"I", # uintc
"l", # long
"L", # ulong
"q", # longlong
"Q", # ulonglong
"e", # half
"f", # single
"d", # double
"g", # longdouble
"F", # csingle
"D", # cdouble
"G", # clongdouble
"O", # object
"S", # bytes_ (S0)
"a", # bytes_ (deprecated)
"U", # str_
"V", # void
"M", # datetime64
"m", # timedelta64
"c", # bytes_ (S1)
"T", # StringDType
]
_DTypeNum: TypeAlias = L[
0, # bool
1, # byte
2, # ubyte
3, # short
4, # ushort
5, # intc
6, # uintc
7, # long
8, # ulong
9, # longlong
10, # ulonglong
23, # half
11, # single
12, # double
13, # longdouble
14, # csingle
15, # cdouble
16, # clongdouble
17, # object
18, # bytes_
19, # str_
20, # void
21, # datetime64
22, # timedelta64
25, # no type
256, # user-defined
2056, # StringDType
]
_DTypeBuiltinKind: TypeAlias = L[0, 1, 2]
_ArrayAPIVersion: TypeAlias = L["2021.12", "2022.12", "2023.12"]
_CastingKind: TypeAlias = L["no", "equiv", "safe", "same_kind", "unsafe"]
_OrderKACF: TypeAlias = L[None, "K", "A", "C", "F"]
_OrderACF: TypeAlias = L[None, "A", "C", "F"]
_OrderCF: TypeAlias = L[None, "C", "F"]
_ModeKind: TypeAlias = L["raise", "wrap", "clip"]
_PartitionKind: TypeAlias = L["introselect"]
# in practice, only the first case-insensitive character is considered (so e.g.
# "QuantumSort3000" will be interpreted as quicksort).
_SortKind: TypeAlias = L[
"Q", "quick", "quicksort",
"M", "merge", "mergesort",
"H", "heap", "heapsort",
"S", "stable", "stablesort",
]
_SortSide: TypeAlias = L["left", "right"]
_ConvertibleToInt: TypeAlias = SupportsInt | SupportsIndex | _CharLike_co
_ConvertibleToFloat: TypeAlias = SupportsFloat | SupportsIndex | _CharLike_co
if sys.version_info >= (3, 11):
_ConvertibleToComplex: TypeAlias = SupportsComplex | SupportsFloat | SupportsIndex | _CharLike_co
else:
_ConvertibleToComplex: TypeAlias = complex | SupportsComplex | SupportsFloat | SupportsIndex | _CharLike_co
_NDIterFlagsKind: TypeAlias = L[
"buffered",
"c_index",
"copy_if_overlap",
"common_dtype",
"delay_bufalloc",
"external_loop",
"f_index",
"grow_inner", "growinner",
"multi_index",
"ranged",
"refs_ok",
"reduce_ok",
"zerosize_ok",
]
_NDIterFlagsOp: TypeAlias = L[
"aligned",
"allocate",
"arraymask",
"copy",
"config",
"nbo",
"no_subtype",
"no_broadcast",
"overlap_assume_elementwise",
"readonly",
"readwrite",
"updateifcopy",
"virtual",
"writeonly",
"writemasked"
]
_MemMapModeKind: TypeAlias = L[
"readonly", "r",
"copyonwrite", "c",
"readwrite", "r+",
"write", "w+",
]
_DT64Date: TypeAlias = _HasDateAttributes | L["TODAY", "today", b"TODAY", b"today"]
_DT64Now: TypeAlias = L["NOW", "now", b"NOW", b"now"]
_NaTValue: TypeAlias = L["NAT","NaT", "nat",b"NAT", b"NaT", b"nat"]
_MonthUnit: TypeAlias = L["Y", "M", b"Y", b"M"]
_DayUnit: TypeAlias = L["W", "D", b"W", b"D"]
_DateUnit: TypeAlias = L[_MonthUnit, _DayUnit]
_NativeTimeUnit: TypeAlias = L["h", "m", "s", "ms", "us", "μs", b"h", b"m", b"s", b"ms", b"us"]
_IntTimeUnit: TypeAlias = L["ns", "ps", "fs", "as", b"ns", b"ps", b"fs", b"as"]
_TimeUnit: TypeAlias = L[_NativeTimeUnit, _IntTimeUnit]
_NativeTD64Unit: TypeAlias = L[_DayUnit, _NativeTimeUnit]
_IntTD64Unit: TypeAlias = L[_MonthUnit, _IntTimeUnit]
_TD64Unit: TypeAlias = L[_DateUnit, _TimeUnit]
_TimeUnitSpec: TypeAlias = _TD64UnitT | tuple[_TD64UnitT, SupportsIndex]
### Protocols (for internal use only)
@type_check_only
class _SupportsFileMethods(SupportsFlush, Protocol):
# Protocol for representing file-like-objects accepted by `ndarray.tofile` and `fromfile`
def fileno(self) -> SupportsIndex: ...
def tell(self) -> SupportsIndex: ...
def seek(self, offset: int, whence: int, /) -> object: ...
@type_check_only
class _SupportsFileMethodsRW(SupportsWrite[bytes], _SupportsFileMethods, Protocol):
pass
@type_check_only
class _SupportsItem(Protocol[_T_co]):
def item(self, /) -> _T_co: ...
@type_check_only
class _SupportsDLPack(Protocol[_T_contra]):
def __dlpack__(self, /, *, stream: _T_contra | None = None) -> CapsuleType: ...
@type_check_only
class _HasShape(Protocol[_ShapeT_co]):
@property
def shape(self, /) -> _ShapeT_co: ...
@type_check_only
class _HasShapeAndSupportsItem(_HasShape[_ShapeT_co], _SupportsItem[_T_co], Protocol[_ShapeT_co, _T_co]):
pass
# matches any `x` on `x.type.item() -> _T_co`, e.g. `dtype[np.int8]` gives `_T_co: int`
@type_check_only
class _HashTypeWithItem(Protocol[_T_co]):
@property
def type(self, /) -> type[_SupportsItem[_T_co]]: ...
# matches any `x` on `x.shape: _ShapeT_co` and `x.dtype.type.item() -> _T_co`,
# useful for capturing the item-type (`_T_co`) of the scalar-type of an array with
# specific shape (`_ShapeT_co`).
@type_check_only
class _HasShapeAndDTypeWithItem(Protocol[_ShapeT_co, _T_co]):
@property
def shape(self, /) -> _ShapeT_co: ...
@property
def dtype(self, /) -> _HashTypeWithItem[_T_co]: ...
@type_check_only
class _HasRealAndImag(Protocol[_RealT_co, _ImagT_co]):
@property
def real(self, /) -> _RealT_co: ...
@property
def imag(self, /) -> _ImagT_co: ...
@type_check_only
class _HasTypeWithRealAndImag(Protocol[_RealT_co, _ImagT_co]):
@property
def type(self, /) -> type[_HasRealAndImag[_RealT_co, _ImagT_co]]: ...
@type_check_only
class _HasDTypeWithRealAndImag(Protocol[_RealT_co, _ImagT_co]):
@property
def dtype(self, /) -> _HasTypeWithRealAndImag[_RealT_co, _ImagT_co]: ...
@type_check_only
class _HasDateAttributes(Protocol):
# The `datetime64` constructors requires an object with the three attributes below,
# and thus supports datetime duck typing
@property
def day(self) -> int: ...
@property
def month(self) -> int: ...
@property
def year(self) -> int: ...
### Mixins (for internal use only)
@type_check_only
class _RealMixin:
@property
def real(self) -> Self: ...
@property
def imag(self) -> Self: ...
@type_check_only
class _RoundMixin:
@overload
def __round__(self, /, ndigits: None = None) -> int: ...
@overload
def __round__(self, /, ndigits: SupportsIndex) -> Self: ...
@type_check_only
class _IntegralMixin(_RealMixin):
@property
def numerator(self) -> Self: ...
@property
def denominator(self) -> L[1]: ...
def is_integer(self, /) -> L[True]: ...
### Public API
__version__: Final[LiteralString] = ...
__array_api_version__: Final = "2023.12"
test: Final[PytestTester] = ...
e: Final[float] = ...
euler_gamma: Final[float] = ...
inf: Final[float] = ...
nan: Final[float] = ...
pi: Final[float] = ...
little_endian: Final[builtins.bool] = ...
False_: Final[np.bool[L[False]]] = ...
True_: Final[np.bool[L[True]]] = ...
newaxis: Final[None] = None
@final
class dtype(Generic[_SCT_co]):
names: None | tuple[builtins.str, ...]
def __hash__(self) -> int: ...
# `None` results in the default dtype
@overload
def __new__(
cls,
dtype: None | type[float64],
align: builtins.bool = ...,
copy: builtins.bool = ...,
metadata: dict[builtins.str, Any] = ...
) -> dtype[float64]: ...
# Overload for `dtype` instances, scalar types, and instances that have a
# `dtype: dtype[_SCT]` attribute
@overload
def __new__(
cls,
dtype: _DTypeLike[_SCT],
align: builtins.bool = ...,
copy: builtins.bool = ...,
metadata: dict[builtins.str, Any] = ...,
) -> dtype[_SCT]: ...
# Builtin types
#
# NOTE: Typecheckers act as if `bool <: int <: float <: complex <: object`,
# even though at runtime `int`, `float`, and `complex` aren't subtypes..
# This makes it impossible to express e.g. "a float that isn't an int",
# since type checkers treat `_: float` like `_: float | int`.
#
# For more details, see:
# - https://github.com/numpy/numpy/issues/27032#issuecomment-2278958251
# - https://typing.readthedocs.io/en/latest/spec/special-types.html#special-cases-for-float-and-complex
@overload
def __new__(
cls,
dtype: type[builtins.bool | np.bool],
align: builtins.bool = ...,
copy: builtins.bool = ...,
metadata: dict[str, Any] = ...,
) -> dtype[np.bool]: ...
# NOTE: `_: type[int]` also accepts `type[int | bool]`
@overload
def __new__(
cls,
dtype: type[int | int_ | np.bool],
align: builtins.bool = ...,
copy: builtins.bool = ...,
metadata: dict[str, Any] = ...,
) -> dtype[int_ | np.bool]: ...
# NOTE: `_: type[float]` also accepts `type[float | int | bool]`
# NOTE: `float64` inherits from `float` at runtime; but this isn't
# reflected in these stubs. So an explicit `float64` is required here.
@overload
def __new__(
cls,
dtype: None | type[float | float64 | int_ | np.bool],
align: builtins.bool = ...,
copy: builtins.bool = ...,
metadata: dict[str, Any] = ...,
) -> dtype[float64 | int_ | np.bool]: ...
# NOTE: `_: type[complex]` also accepts `type[complex | float | int | bool]`
@overload
def __new__(
cls,
dtype: type[complex | complex128 | float64 | int_ | np.bool],
align: builtins.bool = ...,
copy: builtins.bool = ...,
metadata: dict[str, Any] = ...,
) -> dtype[complex128 | float64 | int_ | np.bool]: ...
@overload
def __new__(
cls,
dtype: type[bytes], # also includes `type[bytes_]`
align: builtins.bool = ...,
copy: builtins.bool = ...,
metadata: dict[str, Any] = ...,
) -> dtype[bytes_]: ...
@overload
def __new__(
cls,
dtype: type[str], # also includes `type[str_]`
align: builtins.bool = ...,
copy: builtins.bool = ...,
metadata: dict[str, Any] = ...,
) -> dtype[str_]: ...
# NOTE: These `memoryview` overloads assume PEP 688, which requires mypy to
# be run with the (undocumented) `--disable-memoryview-promotion` flag,
# This will be the default in a future mypy release, see:
# https://github.com/python/mypy/issues/15313
# Pyright / Pylance requires setting `disableBytesTypePromotions=true`,
# which is the default in strict mode
@overload
def __new__(
cls,
dtype: type[memoryview | void],
align: builtins.bool = ...,
copy: builtins.bool = ...,
metadata: dict[str, Any] = ...,
) -> dtype[void]: ...
# NOTE: `_: type[object]` would also accept e.g. `type[object | complex]`,
# and is therefore not included here
@overload
def __new__(
cls,
dtype: type[_BuiltinObjectLike | object_],
align: builtins.bool = ...,
copy: builtins.bool = ...,
metadata: dict[str, Any] = ...,
) -> dtype[object_]: ...
# Unions of builtins.
@overload
def __new__(
cls,
dtype: type[bytes | str],
align: builtins.bool = ...,
copy: builtins.bool = ...,
metadata: dict[str, Any] = ...,
) -> dtype[character]: ...
@overload
def __new__(
cls,
dtype: type[bytes | str | memoryview],
align: builtins.bool = ...,
copy: builtins.bool = ...,
metadata: dict[str, Any] = ...,
) -> dtype[flexible]: ...
@overload
def __new__(
cls,
dtype: type[complex | bytes | str | memoryview | _BuiltinObjectLike],
align: builtins.bool = ...,
copy: builtins.bool = ...,
metadata: dict[str, Any] = ...,
) -> dtype[np.bool | int_ | float64 | complex128 | flexible | object_]: ...
# `unsignedinteger` string-based representations and ctypes
@overload
def __new__(cls, dtype: _UInt8Codes | type[ct.c_uint8], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uint8]: ...
@overload
def __new__(cls, dtype: _UInt16Codes | type[ct.c_uint16], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uint16]: ...
@overload
def __new__(cls, dtype: _UInt32Codes | type[ct.c_uint32], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uint32]: ...
@overload
def __new__(cls, dtype: _UInt64Codes | type[ct.c_uint64], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uint64]: ...
@overload
def __new__(cls, dtype: _UByteCodes | type[ct.c_ubyte], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[ubyte]: ...
@overload
def __new__(cls, dtype: _UShortCodes | type[ct.c_ushort], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[ushort]: ...
@overload
def __new__(cls, dtype: _UIntCCodes | type[ct.c_uint], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uintc]: ...
# NOTE: We're assuming here that `uint_ptr_t == size_t`,
# an assumption that does not hold in rare cases (same for `ssize_t`)
@overload
def __new__(cls, dtype: _UIntPCodes | type[ct.c_void_p] | type[ct.c_size_t], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[uintp]: ...
@overload
def __new__(cls, dtype: _ULongCodes | type[ct.c_ulong], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[ulong]: ...
@overload
def __new__(cls, dtype: _ULongLongCodes | type[ct.c_ulonglong], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[ulonglong]: ...
# `signedinteger` string-based representations and ctypes
@overload
def __new__(cls, dtype: _Int8Codes | type[ct.c_int8], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int8]: ...
@overload
def __new__(cls, dtype: _Int16Codes | type[ct.c_int16], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int16]: ...
@overload
def __new__(cls, dtype: _Int32Codes | type[ct.c_int32], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int32]: ...
@overload
def __new__(cls, dtype: _Int64Codes | type[ct.c_int64], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[int64]: ...
@overload
def __new__(cls, dtype: _ByteCodes | type[ct.c_byte], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[byte]: ...
@overload
def __new__(cls, dtype: _ShortCodes | type[ct.c_short], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[short]: ...
@overload
def __new__(cls, dtype: _IntCCodes | type[ct.c_int], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[intc]: ...
@overload
def __new__(cls, dtype: _IntPCodes | type[ct.c_ssize_t], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[intp]: ...
@overload
def __new__(cls, dtype: _LongCodes | type[ct.c_long], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[long]: ...
@overload
def __new__(cls, dtype: _LongLongCodes | type[ct.c_longlong], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[longlong]: ...
# `floating` string-based representations and ctypes
@overload
def __new__(cls, dtype: _Float16Codes, align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[float16]: ...
@overload
def __new__(cls, dtype: _Float32Codes, align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[float32]: ...
@overload
def __new__(cls, dtype: _Float64Codes, align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[float64]: ...
@overload
def __new__(cls, dtype: _HalfCodes, align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[half]: ...
@overload
def __new__(cls, dtype: _SingleCodes | type[ct.c_float], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[single]: ...
@overload
def __new__(cls, dtype: _DoubleCodes | type[ct.c_double], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[double]: ...
@overload
def __new__(cls, dtype: _LongDoubleCodes | type[ct.c_longdouble], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[longdouble]: ...
# `complexfloating` string-based representations
@overload
def __new__(cls, dtype: _Complex64Codes, align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[complex64]: ...
@overload
def __new__(cls, dtype: _Complex128Codes, align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[complex128]: ...
@overload
def __new__(cls, dtype: _CSingleCodes, align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[csingle]: ...
@overload
def __new__(cls, dtype: _CDoubleCodes, align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[cdouble]: ...
@overload
def __new__(cls, dtype: _CLongDoubleCodes, align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[clongdouble]: ...
# Miscellaneous string-based representations and ctypes
@overload
def __new__(cls, dtype: _BoolCodes | type[ct.c_bool], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[np.bool]: ...
@overload
def __new__(cls, dtype: _TD64Codes, align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[timedelta64]: ...
@overload
def __new__(cls, dtype: _DT64Codes, align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[datetime64]: ...
@overload
def __new__(cls, dtype: _StrCodes, align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[str_]: ...
@overload
def __new__(cls, dtype: _BytesCodes | type[ct.c_char], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[bytes_]: ...
@overload
def __new__(cls, dtype: _VoidCodes | _VoidDTypeLike, align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[void]: ...
@overload
def __new__(cls, dtype: _ObjectCodes | type[ct.py_object[Any]], align: builtins.bool = ..., copy: builtins.bool = ..., metadata: dict[builtins.str, Any] = ...) -> dtype[object_]: ...
# `StringDType` requires special treatment because it has no scalar type
@overload
def __new__(
cls,
dtype: dtypes.StringDType | _StringCodes,
align: builtins.bool = ...,
copy: builtins.bool = ...,
metadata: dict[builtins.str, Any] = ...
) -> dtypes.StringDType: ...
# Combined char-codes and ctypes, analogous to the scalar-type hierarchy
@overload
def __new__(
cls,
dtype: _UnsignedIntegerCodes | _UnsignedIntegerCType,
align: builtins.bool = ...,
copy: builtins.bool = ...,
metadata: dict[builtins.str, Any] = ...,
) -> dtype[unsignedinteger[Any]]: ...
@overload
def __new__(
cls,
dtype: _SignedIntegerCodes | _SignedIntegerCType,
align: builtins.bool = ...,
copy: builtins.bool = ...,
metadata: dict[builtins.str, Any] = ...,
) -> dtype[signedinteger[Any]]: ...
@overload
def __new__(
cls,
dtype: _IntegerCodes | _IntegerCType,
align: builtins.bool = ...,
copy: builtins.bool = ...,
metadata: dict[builtins.str, Any] = ...,
) -> dtype[integer[Any]]: ...
@overload
def __new__(
cls,
dtype: _FloatingCodes | _FloatingCType,
align: builtins.bool = ...,
copy: builtins.bool = ...,
metadata: dict[builtins.str, Any] = ...,
) -> dtype[floating[Any]]: ...
@overload
def __new__(
cls,
dtype: _ComplexFloatingCodes,
align: builtins.bool = ...,
copy: builtins.bool = ...,
metadata: dict[builtins.str, Any] = ...,
) -> dtype[complexfloating[Any, Any]]: ...
@overload
def __new__(
cls,
dtype: _InexactCodes | _FloatingCType,
align: builtins.bool = ...,
copy: builtins.bool = ...,
metadata: dict[builtins.str, Any] = ...,
) -> dtype[inexact[Any]]: ...
@overload
def __new__(
cls,
dtype: _NumberCodes | _NumberCType,
align: builtins.bool = ...,
copy: builtins.bool = ...,
metadata: dict[builtins.str, Any] = ...,
) -> dtype[number[Any]]: ...
@overload
def __new__(
cls,
dtype: _CharacterCodes | type[ct.c_char],
align: builtins.bool = ...,
copy: builtins.bool = ...,
metadata: dict[builtins.str, Any] = ...,
) -> dtype[character]: ...
@overload
def __new__(
cls,
dtype: _FlexibleCodes | type[ct.c_char],
align: builtins.bool = ...,
copy: builtins.bool = ...,
metadata: dict[builtins.str, Any] = ...,
) -> dtype[flexible]: ...
@overload
def __new__(
cls,
dtype: _GenericCodes | _GenericCType,
align: builtins.bool = ...,
copy: builtins.bool = ...,
metadata: dict[builtins.str, Any] = ...,
) -> dtype[generic]: ...
# Handle strings that can't be expressed as literals; i.e. "S1", "S2", ...
@overload
def __new__(
cls,
dtype: builtins.str,
align: builtins.bool = ...,
copy: builtins.bool = ...,
metadata: dict[builtins.str, Any] = ...,
) -> dtype[Any]: ...
# Catch-all overload for object-likes
# NOTE: `object_ | Any` is *not* equivalent to `Any` -- it describes some
# (static) type `T` s.t. `object_ <: T <: builtins.object` (`<:` denotes
# the subtyping relation, the (gradual) typing analogue of `issubclass()`).
# https://typing.readthedocs.io/en/latest/spec/concepts.html#union-types
@overload
def __new__(
cls,
dtype: type[object],
align: builtins.bool = ...,
copy: builtins.bool = ...,
metadata: dict[builtins.str, Any] = ...,
) -> dtype[object_ | Any]: ...
def __class_getitem__(cls, item: Any, /) -> GenericAlias: ...
@overload
def __getitem__(self: dtype[void], key: list[builtins.str], /) -> dtype[void]: ...
@overload
def __getitem__(self: dtype[void], key: builtins.str | SupportsIndex, /) -> dtype[Any]: ...
# NOTE: In the future 1-based multiplications will also yield `flexible` dtypes
@overload
def __mul__(self: _DType, value: L[1], /) -> _DType: ...
@overload
def __mul__(self: _FlexDType, value: SupportsIndex, /) -> _FlexDType: ...
@overload
def __mul__(self, value: SupportsIndex, /) -> dtype[void]: ...
# NOTE: `__rmul__` seems to be broken when used in combination with
# literals as of mypy 0.902. Set the return-type to `dtype[Any]` for
# now for non-flexible dtypes.
@overload
def __rmul__(self: _FlexDType, value: SupportsIndex, /) -> _FlexDType: ...
@overload
def __rmul__(self, value: SupportsIndex, /) -> dtype[Any]: ...
def __gt__(self, other: DTypeLike, /) -> builtins.bool: ...
def __ge__(self, other: DTypeLike, /) -> builtins.bool: ...
def __lt__(self, other: DTypeLike, /) -> builtins.bool: ...
def __le__(self, other: DTypeLike, /) -> builtins.bool: ...
# Explicitly defined `__eq__` and `__ne__` to get around mypy's
# `strict_equality` option; even though their signatures are
# identical to their `object`-based counterpart
def __eq__(self, other: Any, /) -> builtins.bool: ...
def __ne__(self, other: Any, /) -> builtins.bool: ...
@property
def alignment(self) -> int: ...
@property
def base(self) -> dtype[Any]: ...
@property
def byteorder(self) -> _ByteOrderChar: ...
@property
def char(self) -> _DTypeChar: ...
@property
def descr(self) -> list[tuple[LiteralString, LiteralString] | tuple[LiteralString, LiteralString, _Shape]]: ...
@property
def fields(self,) -> None | MappingProxyType[LiteralString, tuple[dtype[Any], int] | tuple[dtype[Any], int, Any]]: ...
@property
def flags(self) -> int: ...
@property
def hasobject(self) -> builtins.bool: ...
@property
def isbuiltin(self) -> _DTypeBuiltinKind: ...
@property
def isnative(self) -> builtins.bool: ...
@property
def isalignedstruct(self) -> builtins.bool: ...
@property
def itemsize(self) -> int: ...
@property
def kind(self) -> _DTypeKind: ...
@property
def metadata(self) -> None | MappingProxyType[builtins.str, Any]: ...
@property
def name(self) -> LiteralString: ...
@property
def num(self) -> _DTypeNum: ...
@property
def shape(self) -> tuple[()] | _Shape: ...
@property
def ndim(self) -> int: ...
@property
def subdtype(self) -> None | tuple[dtype[Any], _Shape]: ...
def newbyteorder(self, new_order: _ByteOrder = ..., /) -> Self: ...
@property
def str(self) -> LiteralString: ...
@property
def type(self) -> type[_SCT_co]: ...
@final
class flatiter(Generic[_ArrayT_co]):
__hash__: ClassVar[None]
@property
def base(self) -> _ArrayT_co: ...
@property
def coords(self) -> _Shape: ...
@property
def index(self) -> int: ...
def copy(self) -> _ArrayT_co: ...
def __iter__(self) -> Self: ...
def __next__(self: flatiter[NDArray[_SCT]]) -> _SCT: ...
def __len__(self) -> int: ...
@overload
def __getitem__(
self: flatiter[NDArray[_SCT]],
key: int | integer[Any] | tuple[int | integer[Any]],
) -> _SCT: ...
@overload
def __getitem__(
self,
key: _ArrayLikeInt | slice | EllipsisType | tuple[_ArrayLikeInt | slice | EllipsisType],
) -> _ArrayT_co: ...
# TODO: `__setitem__` operates via `unsafe` casting rules, and can
# thus accept any type accepted by the relevant underlying `np.generic`
# constructor.
# This means that `value` must in reality be a supertype of `npt.ArrayLike`.
def __setitem__(
self,
key: _ArrayLikeInt | slice | EllipsisType | tuple[_ArrayLikeInt | slice | EllipsisType],
value: Any,
) -> None: ...
@overload
def __array__(self: flatiter[ndarray[_1DShapeT, _DType]], dtype: None = ..., /) -> ndarray[_1DShapeT, _DType]: ...
@overload
def __array__(self: flatiter[ndarray[_1DShapeT, Any]], dtype: _DType, /) -> ndarray[_1DShapeT, _DType]: ...
@overload
def __array__(self: flatiter[ndarray[_Shape, _DType]], dtype: None = ..., /) -> ndarray[_Shape, _DType]: ...
@overload
def __array__(self, dtype: _DType, /) -> ndarray[_Shape, _DType]: ...
@type_check_only
class _ArrayOrScalarCommon:
@property
def real(self, /) -> Any: ...
@property
def imag(self, /) -> Any: ...
@property
def T(self) -> Self: ...
@property
def mT(self) -> Self: ...
@property
def data(self) -> memoryview: ...
@property
def flags(self) -> flagsobj: ...
@property
def itemsize(self) -> int: ...
@property
def nbytes(self) -> int: ...
@property
def device(self) -> L["cpu"]: ...
def __bool__(self, /) -> builtins.bool: ...
def __int__(self, /) -> int: ...
def __float__(self, /) -> float: ...
def __copy__(self) -> Self: ...
def __deepcopy__(self, memo: None | dict[int, Any], /) -> Self: ...
# TODO: How to deal with the non-commutative nature of `==` and `!=`?
# xref numpy/numpy#17368
def __eq__(self, other: Any, /) -> Any: ...
def __ne__(self, other: Any, /) -> Any: ...
def copy(self, order: _OrderKACF = ...) -> Self: ...
def dump(self, file: StrOrBytesPath | SupportsWrite[bytes]) -> None: ...
def dumps(self) -> bytes: ...
def tobytes(self, order: _OrderKACF = ...) -> bytes: ...
# NOTE: `tostring()` is deprecated and therefore excluded
# def tostring(self, order=...): ...
def tofile(self, fid: StrOrBytesPath | _SupportsFileMethods, sep: str = ..., format: str = ...) -> None: ...
# generics and 0d arrays return builtin scalars
def tolist(self) -> Any: ...
def to_device(self, device: L["cpu"], /, *, stream: None | int | Any = ...) -> Self: ...
@property
def __array_interface__(self) -> dict[str, Any]: ...
@property
def __array_priority__(self) -> float: ...
@property
def __array_struct__(self) -> CapsuleType: ... # builtins.PyCapsule
def __array_namespace__(self, /, *, api_version: _ArrayAPIVersion | None = None) -> ModuleType: ...
def __setstate__(self, state: tuple[
SupportsIndex, # version
_ShapeLike, # Shape
_DType_co, # DType
np.bool, # F-continuous
bytes | list[Any], # Data
], /) -> None: ...
def conj(self) -> Self: ...
def conjugate(self) -> Self: ...
def argsort(
self,
axis: None | SupportsIndex = ...,
kind: None | _SortKind = ...,
order: None | str | Sequence[str] = ...,
*,
stable: None | bool = ...,
) -> NDArray[Any]: ...
@overload # axis=None (default), out=None (default), keepdims=False (default)
def argmax(self, /, axis: None = None, out: None = None, *, keepdims: L[False] = False) -> intp: ...
@overload # axis=index, out=None (default)
def argmax(self, /, axis: SupportsIndex, out: None = None, *, keepdims: builtins.bool = False) -> Any: ...
@overload # axis=index, out=ndarray
def argmax(self, /, axis: SupportsIndex | None, out: _ArrayT, *, keepdims: builtins.bool = False) -> _ArrayT: ...
@overload
def argmax(self, /, axis: SupportsIndex | None = None, *, out: _ArrayT, keepdims: builtins.bool = False) -> _ArrayT: ...
@overload # axis=None (default), out=None (default), keepdims=False (default)
def argmin(self, /, axis: None = None, out: None = None, *, keepdims: L[False] = False) -> intp: ...
@overload # axis=index, out=None (default)
def argmin(self, /, axis: SupportsIndex, out: None = None, *, keepdims: builtins.bool = False) -> Any: ...
@overload # axis=index, out=ndarray
def argmin(self, /, axis: SupportsIndex | None, out: _ArrayT, *, keepdims: builtins.bool = False) -> _ArrayT: ...
@overload
def argmin(self, /, axis: SupportsIndex | None = None, *, out: _ArrayT, keepdims: builtins.bool = False) -> _ArrayT: ...
@overload # out=None (default)
def round(self, /, decimals: SupportsIndex = 0, out: None = None) -> Self: ...
@overload # out=ndarray
def round(self, /, decimals: SupportsIndex, out: _ArrayT) -> _ArrayT: ...
@overload
def round(self, /, decimals: SupportsIndex = 0, *, out: _ArrayT) -> _ArrayT: ...
@overload # out=None (default)
def choose(self, /, choices: ArrayLike, out: None = None, mode: _ModeKind = "raise") -> NDArray[Any]: ...
@overload # out=ndarray
def choose(self, /, choices: ArrayLike, out: _ArrayT, mode: _ModeKind = "raise") -> _ArrayT: ...
# TODO: Annotate kwargs with an unpacked `TypedDict`
@overload # out: None (default)
def clip(self, /, min: ArrayLike, max: ArrayLike | None = None, out: None = None, **kwargs: Any) -> NDArray[Any]: ...
@overload
def clip(self, /, min: None, max: ArrayLike, out: None = None, **kwargs: Any) -> NDArray[Any]: ...
@overload
def clip(self, /, min: None = None, *, max: ArrayLike, out: None = None, **kwargs: Any) -> NDArray[Any]: ...
@overload # out: ndarray
def clip(self, /, min: ArrayLike, max: ArrayLike | None, out: _ArrayT, **kwargs: Any) -> _ArrayT: ...
@overload
def clip(self, /, min: ArrayLike, max: ArrayLike | None = None, *, out: _ArrayT, **kwargs: Any) -> _ArrayT: ...
@overload
def clip(self, /, min: None, max: ArrayLike, out: _ArrayT, **kwargs: Any) -> _ArrayT: ...
@overload
def clip(self, /, min: None = None, *, max: ArrayLike, out: _ArrayT, **kwargs: Any) -> _ArrayT: ...
@overload
def compress(self, /, condition: _ArrayLikeInt_co, axis: SupportsIndex | None = None, out: None = None) -> NDArray[Any]: ...
@overload
def compress(self, /, condition: _ArrayLikeInt_co, axis: SupportsIndex | None, out: _ArrayT) -> _ArrayT: ...
@overload
def compress(self, /, condition: _ArrayLikeInt_co, axis: SupportsIndex | None = None, *, out: _ArrayT) -> _ArrayT: ...
@overload # out: None (default)
def cumprod(self, /, axis: SupportsIndex | None = None, dtype: DTypeLike | None = None, out: None = None) -> NDArray[Any]: ...
@overload # out: ndarray
def cumprod(self, /, axis: SupportsIndex | None, dtype: DTypeLike | None, out: _ArrayT) -> _ArrayT: ...
@overload
def cumprod(self, /, axis: SupportsIndex | None = None, dtype: DTypeLike | None = None, *, out: _ArrayT) -> _ArrayT: ...
@overload # out: None (default)
def cumsum(self, /, axis: SupportsIndex | None = None, dtype: DTypeLike | None = None, out: None = None) -> NDArray[Any]: ...
@overload # out: ndarray
def cumsum(self, /, axis: SupportsIndex | None, dtype: DTypeLike | None, out: _ArrayT) -> _ArrayT: ...
@overload
def cumsum(self, /, axis: SupportsIndex | None = None, dtype: DTypeLike | None = None, *, out: _ArrayT) -> _ArrayT: ...
@overload
def max(
self,
/,
axis: _ShapeLike | None = None,
out: None = None,
keepdims: builtins.bool = False,
initial: _NumberLike_co = ...,
where: _ArrayLikeBool_co = True,
) -> Any: ...
@overload
def max(
self,
/,
axis: _ShapeLike | None,
out: _ArrayT,
keepdims: builtins.bool = False,
initial: _NumberLike_co = ...,
where: _ArrayLikeBool_co = True,
) -> _ArrayT: ...
@overload
def max(
self,
/,
axis: _ShapeLike | None = None,
*,
out: _ArrayT,
keepdims: builtins.bool = False,
initial: _NumberLike_co = ...,
where: _ArrayLikeBool_co = True,
) -> _ArrayT: ...
@overload
def min(
self,
/,
axis: _ShapeLike | None = None,
out: None = None,
keepdims: builtins.bool = False,
initial: _NumberLike_co = ...,
where: _ArrayLikeBool_co = True,
) -> Any: ...
@overload
def min(
self,
/,
axis: _ShapeLike | None,
out: _ArrayT,
keepdims: builtins.bool = False,
initial: _NumberLike_co = ...,
where: _ArrayLikeBool_co = True,
) -> _ArrayT: ...
@overload
def min(
self,
/,
axis: _ShapeLike | None = None,
*,
out: _ArrayT,
keepdims: builtins.bool = False,
initial: _NumberLike_co = ...,
where: _ArrayLikeBool_co = True,
) -> _ArrayT: ...
@overload
def sum(
self,
/,
axis: _ShapeLike | None = None,
dtype: DTypeLike | None = None,
out: None = None,
keepdims: builtins.bool = False,
initial: _NumberLike_co = 0,
where: _ArrayLikeBool_co = True,
) -> Any: ...
@overload
def sum(
self,
/,
axis: _ShapeLike | None,
dtype: DTypeLike | None,
out: _ArrayT,
keepdims: builtins.bool = False,
initial: _NumberLike_co = 0,
where: _ArrayLikeBool_co = True,
) -> _ArrayT: ...
@overload
def sum(
self,
/,
axis: _ShapeLike | None = None,
dtype: DTypeLike | None = None,
*,
out: _ArrayT,
keepdims: builtins.bool = False,
initial: _NumberLike_co = 0,
where: _ArrayLikeBool_co = True,
) -> _ArrayT: ...
@overload
def prod(
self,
/,
axis: _ShapeLike | None = None,
dtype: DTypeLike | None = None,
out: None = None,
keepdims: builtins.bool = False,
initial: _NumberLike_co = 1,
where: _ArrayLikeBool_co = True,
) -> Any: ...
@overload
def prod(
self,
/,
axis: _ShapeLike | None,
dtype: DTypeLike | None,
out: _ArrayT,
keepdims: builtins.bool = False,
initial: _NumberLike_co = 1,
where: _ArrayLikeBool_co = True,
) -> _ArrayT: ...
@overload
def prod(
self,
/,
axis: _ShapeLike | None = None,
dtype: DTypeLike | None = None,
*,
out: _ArrayT,
keepdims: builtins.bool = False,
initial: _NumberLike_co = 1,
where: _ArrayLikeBool_co = True,
) -> _ArrayT: ...
@overload
def mean(
self,
axis: _ShapeLike | None = None,
dtype: DTypeLike | None = None,
out: None = None,
keepdims: builtins.bool = False,
*,
where: _ArrayLikeBool_co = True,
) -> Any: ...
@overload
def mean(
self,
/,
axis: _ShapeLike | None,
dtype: DTypeLike | None,
out: _ArrayT,
keepdims: builtins.bool = False,
*,
where: _ArrayLikeBool_co = True,
) -> _ArrayT: ...
@overload
def mean(
self,
/,
axis: _ShapeLike | None = None,
dtype: DTypeLike | None = None,
*,
out: _ArrayT,
keepdims: builtins.bool = False,
where: _ArrayLikeBool_co = True,
) -> _ArrayT: ...
@overload
def std(
self,
axis: _ShapeLike | None = None,
dtype: DTypeLike | None = None,
out: None = None,
ddof: float = 0,
keepdims: builtins.bool = False,
*,
where: _ArrayLikeBool_co = True,
mean: _ArrayLikeNumber_co = ...,
correction: float = ...,
) -> Any: ...
@overload
def std(
self,
axis: _ShapeLike | None,
dtype: DTypeLike | None,
out: _ArrayT,
ddof: float = 0,
keepdims: builtins.bool = False,
*,
where: _ArrayLikeBool_co = True,
mean: _ArrayLikeNumber_co = ...,
correction: float = ...,
) -> _ArrayT: ...
@overload
def std(
self,
axis: _ShapeLike | None = None,
dtype: DTypeLike | None = None,
*,
out: _ArrayT,
ddof: float = 0,
keepdims: builtins.bool = False,
where: _ArrayLikeBool_co = True,
mean: _ArrayLikeNumber_co = ...,
correction: float = ...,
) -> _ArrayT: ...
@overload
def var(
self,
axis: _ShapeLike | None = None,
dtype: DTypeLike | None = None,
out: None = None,
ddof: float = 0,
keepdims: builtins.bool = False,
*,
where: _ArrayLikeBool_co = True,
mean: _ArrayLikeNumber_co = ...,
correction: float = ...,
) -> Any: ...
@overload
def var(
self,
axis: _ShapeLike | None,
dtype: DTypeLike | None,
out: _ArrayT,
ddof: float = 0,
keepdims: builtins.bool = False,
*,
where: _ArrayLikeBool_co = True,
mean: _ArrayLikeNumber_co = ...,
correction: float = ...,
) -> _ArrayT: ...
@overload
def var(
self,
axis: _ShapeLike | None = None,
dtype: DTypeLike | None = None,
*,
out: _ArrayT,
ddof: float = 0,
keepdims: builtins.bool = False,
where: _ArrayLikeBool_co = True,
mean: _ArrayLikeNumber_co = ...,
correction: float = ...,
) -> _ArrayT: ...
class ndarray(_ArrayOrScalarCommon, Generic[_ShapeT_co, _DType_co]):
__hash__: ClassVar[None] # type: ignore[assignment] # pyright: ignore[reportIncompatibleMethodOverride]
@property
def base(self) -> None | NDArray[Any]: ...
@property
def ndim(self) -> int: ...
@property
def size(self) -> int: ...
@property
def real(self: _HasDTypeWithRealAndImag[_SCT, object], /) -> ndarray[_ShapeT_co, dtype[_SCT]]: ...
@real.setter
def real(self, value: ArrayLike, /) -> None: ...
@property
def imag(self: _HasDTypeWithRealAndImag[object, _SCT], /) -> ndarray[_ShapeT_co, dtype[_SCT]]: ...
@imag.setter
def imag(self, value: ArrayLike, /) -> None: ...
def __new__(
cls,
shape: _ShapeLike,
dtype: DTypeLike = ...,
buffer: None | _SupportsBuffer = ...,
offset: SupportsIndex = ...,
strides: None | _ShapeLike = ...,
order: _OrderKACF = ...,
) -> Self: ...
if sys.version_info >= (3, 12):
def __buffer__(self, flags: int, /) -> memoryview: ...
def __class_getitem__(cls, item: Any, /) -> GenericAlias: ...
@overload
def __array__(
self, dtype: None = ..., /, *, copy: None | bool = ...
) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __array__(
self, dtype: _DType, /, *, copy: None | bool = ...
) -> ndarray[_ShapeT_co, _DType]: ...
def __array_ufunc__(
self,
ufunc: ufunc,
method: L["__call__", "reduce", "reduceat", "accumulate", "outer", "at"],
*inputs: Any,
**kwargs: Any,
) -> Any: ...
def __array_function__(
self,
func: Callable[..., Any],
types: Iterable[type],
args: Iterable[Any],
kwargs: Mapping[str, Any],
) -> Any: ...
# NOTE: In practice any object is accepted by `obj`, but as `__array_finalize__`
# is a pseudo-abstract method the type has been narrowed down in order to
# grant subclasses a bit more flexibility
def __array_finalize__(self, obj: None | NDArray[Any], /) -> None: ...
def __array_wrap__(
self,
array: ndarray[_ShapeT, _DType],
context: None | tuple[ufunc, tuple[Any, ...], int] = ...,
return_scalar: builtins.bool = ...,
/,
) -> ndarray[_ShapeT, _DType]: ...
@overload
def __getitem__(self, key: _ArrayInt_co | tuple[_ArrayInt_co, ...], /) -> ndarray[_Shape, _DType_co]: ...
@overload
def __getitem__(self, key: SupportsIndex | tuple[SupportsIndex, ...], /) -> Any: ...
@overload
def __getitem__(self, key: _ArrayIndexLike | tuple[_ArrayIndexLike, ...], /) -> ndarray[_Shape, _DType_co]: ...
@overload
def __getitem__(self: NDArray[void], key: str, /) -> ndarray[_ShapeT_co, np.dtype[Any]]: ...
@overload
def __getitem__(self: NDArray[void], key: list[str], /) -> ndarray[_ShapeT_co, _dtype[void]]: ...
@overload
def __setitem__(self: NDArray[void], key: str | list[str], value: ArrayLike, /) -> None: ...
@overload
def __setitem__(self, key: _ArrayIndexLike | tuple[_ArrayIndexLike, ...], value: ArrayLike, /) -> None: ...
@property
def ctypes(self) -> _ctypes[int]: ...
@property
def shape(self) -> _ShapeT_co: ...
@shape.setter
def shape(self, value: _ShapeLike) -> None: ...
@property
def strides(self) -> _Shape: ...
@strides.setter
def strides(self, value: _ShapeLike) -> None: ...
def byteswap(self, inplace: builtins.bool = ...) -> Self: ...
def fill(self, value: Any) -> None: ...
@property
def flat(self) -> flatiter[Self]: ...
@overload # special casing for `StringDType`, which has no scalar type
def item(self: ndarray[Any, dtypes.StringDType], /) -> str: ...
@overload
def item(self: ndarray[Any, dtypes.StringDType], arg0: SupportsIndex | tuple[SupportsIndex, ...] = ..., /) -> str: ...
@overload
def item(self: ndarray[Any, dtypes.StringDType], /, *args: SupportsIndex) -> str: ...
@overload # use the same output type as that of the underlying `generic`
def item(self: _HasShapeAndDTypeWithItem[Any, _T], /) -> _T: ...
@overload
def item(self: _HasShapeAndDTypeWithItem[Any, _T], arg0: SupportsIndex | tuple[SupportsIndex, ...] = ..., /) -> _T: ...
@overload
def item(self: _HasShapeAndDTypeWithItem[Any, _T], /, *args: SupportsIndex) -> _T: ...
@overload
def tolist(self: _HasShapeAndSupportsItem[tuple[()], _T], /) -> _T: ...
@overload
def tolist(self: _HasShapeAndSupportsItem[tuple[int], _T], /) -> list[_T]: ...
@overload
def tolist(self: _HasShapeAndSupportsItem[tuple[int, int], _T], /) -> list[list[_T]]: ...
@overload
def tolist(self: _HasShapeAndSupportsItem[tuple[int, int, int], _T], /) -> list[list[list[_T]]]: ...
@overload
def tolist(self: _HasShapeAndSupportsItem[Any, _T], /) -> _T | list[_T] | list[list[_T]] | list[list[list[Any]]]: ...
@overload
def resize(self, new_shape: _ShapeLike, /, *, refcheck: builtins.bool = ...) -> None: ...
@overload
def resize(self, *new_shape: SupportsIndex, refcheck: builtins.bool = ...) -> None: ...
def setflags(
self, write: builtins.bool = ..., align: builtins.bool = ..., uic: builtins.bool = ...
) -> None: ...
def squeeze(
self,
axis: None | SupportsIndex | tuple[SupportsIndex, ...] = ...,
) -> ndarray[_Shape, _DType_co]: ...
def swapaxes(
self,
axis1: SupportsIndex,
axis2: SupportsIndex,
) -> ndarray[_Shape, _DType_co]: ...
@overload
def transpose(self, axes: None | _ShapeLike, /) -> Self: ...
@overload
def transpose(self, *axes: SupportsIndex) -> Self: ...
@overload
def all(
self,
axis: None = None,
out: None = None,
keepdims: L[False, 0] = False,
*,
where: _ArrayLikeBool_co = True
) -> np.bool: ...
@overload
def all(
self,
axis: None | int | tuple[int, ...] = None,
out: None = None,
keepdims: SupportsIndex = False,
*,
where: _ArrayLikeBool_co = True,
) -> np.bool | NDArray[np.bool]: ...
@overload
def all(
self,
axis: None | int | tuple[int, ...],
out: _ArrayT,
keepdims: SupportsIndex = False,
*,
where: _ArrayLikeBool_co = True,
) -> _ArrayT: ...
@overload
def all(
self,
axis: None | int | tuple[int, ...] = None,
*,
out: _ArrayT,
keepdims: SupportsIndex = False,
where: _ArrayLikeBool_co = True,
) -> _ArrayT: ...
@overload
def any(
self,
axis: None = None,
out: None = None,
keepdims: L[False, 0] = False,
*,
where: _ArrayLikeBool_co = True
) -> np.bool: ...
@overload
def any(
self,
axis: None | int | tuple[int, ...] = None,
out: None = None,
keepdims: SupportsIndex = False,
*,
where: _ArrayLikeBool_co = True,
) -> np.bool | NDArray[np.bool]: ...
@overload
def any(
self,
axis: None | int | tuple[int, ...],
out: _ArrayT,
keepdims: SupportsIndex = False,
*,
where: _ArrayLikeBool_co = True,
) -> _ArrayT: ...
@overload
def any(
self,
axis: None | int | tuple[int, ...] = None,
*,
out: _ArrayT,
keepdims: SupportsIndex = False,
where: _ArrayLikeBool_co = True,
) -> _ArrayT: ...
def argpartition(
self,
kth: _ArrayLikeInt_co,
axis: None | SupportsIndex = ...,
kind: _PartitionKind = ...,
order: None | str | Sequence[str] = ...,
) -> NDArray[intp]: ...
def diagonal(
self,
offset: SupportsIndex = ...,
axis1: SupportsIndex = ...,
axis2: SupportsIndex = ...,
) -> ndarray[_Shape, _DType_co]: ...
# 1D + 1D returns a scalar;
# all other with at least 1 non-0D array return an ndarray.
@overload
def dot(self, b: _ScalarLike_co, out: None = ...) -> NDArray[Any]: ...
@overload
def dot(self, b: ArrayLike, out: None = ...) -> Any: ... # type: ignore[misc]
@overload
def dot(self, b: ArrayLike, out: _ArrayT) -> _ArrayT: ...
# `nonzero()` is deprecated for 0d arrays/generics
def nonzero(self) -> tuple[NDArray[intp], ...]: ...
def partition(
self,
kth: _ArrayLikeInt_co,
axis: SupportsIndex = ...,
kind: _PartitionKind = ...,
order: None | str | Sequence[str] = ...,
) -> None: ...
# `put` is technically available to `generic`,
# but is pointless as `generic`s are immutable
def put(
self,
ind: _ArrayLikeInt_co,
v: ArrayLike,
mode: _ModeKind = ...,
) -> None: ...
@overload
def searchsorted( # type: ignore[misc]
self, # >= 1D array
v: _ScalarLike_co, # 0D array-like
side: _SortSide = ...,
sorter: None | _ArrayLikeInt_co = ...,
) -> intp: ...
@overload
def searchsorted(
self, # >= 1D array
v: ArrayLike,
side: _SortSide = ...,
sorter: None | _ArrayLikeInt_co = ...,
) -> NDArray[intp]: ...
def setfield(
self,
val: ArrayLike,
dtype: DTypeLike,
offset: SupportsIndex = ...,
) -> None: ...
def sort(
self,
axis: SupportsIndex = ...,
kind: None | _SortKind = ...,
order: None | str | Sequence[str] = ...,
*,
stable: None | bool = ...,
) -> None: ...
@overload
def trace(
self, # >= 2D array
offset: SupportsIndex = ...,
axis1: SupportsIndex = ...,
axis2: SupportsIndex = ...,
dtype: DTypeLike = ...,
out: None = ...,
) -> Any: ...
@overload
def trace(
self, # >= 2D array
offset: SupportsIndex = ...,
axis1: SupportsIndex = ...,
axis2: SupportsIndex = ...,
dtype: DTypeLike = ...,
out: _ArrayT = ...,
) -> _ArrayT: ...
@overload
def take( # type: ignore[misc]
self: NDArray[_SCT],
indices: _IntLike_co,
axis: None | SupportsIndex = ...,
out: None = ...,
mode: _ModeKind = ...,
) -> _SCT: ...
@overload
def take( # type: ignore[misc]
self,
indices: _ArrayLikeInt_co,
axis: None | SupportsIndex = ...,
out: None = ...,
mode: _ModeKind = ...,
) -> ndarray[_Shape, _DType_co]: ...
@overload
def take(
self,
indices: _ArrayLikeInt_co,
axis: None | SupportsIndex = ...,
out: _ArrayT = ...,
mode: _ModeKind = ...,
) -> _ArrayT: ...
def repeat(
self,
repeats: _ArrayLikeInt_co,
axis: None | SupportsIndex = ...,
) -> ndarray[_Shape, _DType_co]: ...
def flatten(self, /, order: _OrderKACF = "C") -> ndarray[tuple[int], _DType_co]: ...
def ravel(self, /, order: _OrderKACF = "C") -> ndarray[tuple[int], _DType_co]: ...
# NOTE: reshape also accepts negative integers, so we can't use integer literals
@overload # (None)
def reshape(self, shape: None, /, *, order: _OrderACF = "C", copy: builtins.bool | None = None) -> Self: ...
@overload # (empty_sequence)
def reshape( # type: ignore[overload-overlap] # mypy false positive
self,
shape: Sequence[Never],
/,
*,
order: _OrderACF = "C",
copy: builtins.bool | None = None,
) -> ndarray[tuple[()], _DType_co]: ...
@overload # (() | (int) | (int, int) | ....) # up to 8-d
def reshape(
self,
shape: _AnyShapeType,
/,
*,
order: _OrderACF = "C",
copy: builtins.bool | None = None,
) -> ndarray[_AnyShapeType, _DType_co]: ...
@overload # (index)
def reshape(
self,
size1: SupportsIndex,
/,
*,
order: _OrderACF = "C",
copy: builtins.bool | None = None,
) -> ndarray[tuple[int], _DType_co]: ...
@overload # (index, index)
def reshape(
self,
size1: SupportsIndex,
size2: SupportsIndex,
/,
*,
order: _OrderACF = "C",
copy: builtins.bool | None = None,
) -> ndarray[tuple[int, int], _DType_co]: ...
@overload # (index, index, index)
def reshape(
self,
size1: SupportsIndex,
size2: SupportsIndex,
size3: SupportsIndex,
/,
*,
order: _OrderACF = "C",
copy: builtins.bool | None = None,
) -> ndarray[tuple[int, int, int], _DType_co]: ...
@overload # (index, index, index, index)
def reshape(
self,
size1: SupportsIndex,
size2: SupportsIndex,
size3: SupportsIndex,
size4: SupportsIndex,
/,
*,
order: _OrderACF = "C",
copy: builtins.bool | None = None,
) -> ndarray[tuple[int, int, int, int], _DType_co]: ...
@overload # (int, *(index, ...))
def reshape(
self,
size0: SupportsIndex,
/,
*shape: SupportsIndex,
order: _OrderACF = "C",
copy: builtins.bool | None = None,
) -> ndarray[_Shape, _DType_co]: ...
@overload # (sequence[index])
def reshape(
self,
shape: Sequence[SupportsIndex],
/,
*,
order: _OrderACF = "C",
copy: builtins.bool | None = None,
) -> ndarray[_Shape, _DType_co]: ...
@overload
def astype(
self,
dtype: _DTypeLike[_SCT],
order: _OrderKACF = ...,
casting: _CastingKind = ...,
subok: builtins.bool = ...,
copy: builtins.bool | _CopyMode = ...,
) -> NDArray[_SCT]: ...
@overload
def astype(
self,
dtype: DTypeLike,
order: _OrderKACF = ...,
casting: _CastingKind = ...,
subok: builtins.bool = ...,
copy: builtins.bool | _CopyMode = ...,
) -> NDArray[Any]: ...
@overload
def view(self) -> Self: ...
@overload
def view(self, type: type[_ArrayT]) -> _ArrayT: ...
@overload
def view(self, dtype: _DTypeLike[_SCT]) -> NDArray[_SCT]: ...
@overload
def view(self, dtype: DTypeLike) -> NDArray[Any]: ...
@overload
def view(
self,
dtype: DTypeLike,
type: type[_ArrayT],
) -> _ArrayT: ...
@overload
def getfield(
self,
dtype: _DTypeLike[_SCT],
offset: SupportsIndex = ...
) -> NDArray[_SCT]: ...
@overload
def getfield(
self,
dtype: DTypeLike,
offset: SupportsIndex = ...
) -> NDArray[Any]: ...
def __index__(self: NDArray[np.integer[Any]], /) -> int: ...
def __int__(self: NDArray[number[Any] | np.timedelta64 | np.bool | object_], /) -> int: ...
def __float__(self: NDArray[number[Any] | np.timedelta64 | np.bool | object_], /) -> float: ...
def __complex__(self: NDArray[number[Any] | np.bool | object_], /) -> complex: ...
def __len__(self) -> int: ...
def __contains__(self, value: object, /) -> builtins.bool: ...
@overload # == 1-d & object_
def __iter__(self: ndarray[tuple[int], dtype[object_]], /) -> Iterator[Any]: ...
@overload # == 1-d
def __iter__(self: ndarray[tuple[int], dtype[_SCT]], /) -> Iterator[_SCT]: ...
@overload # >= 2-d
def __iter__(self: ndarray[tuple[int, int, Unpack[tuple[int, ...]]], dtype[_SCT]], /) -> Iterator[NDArray[_SCT]]: ...
@overload # ?-d
def __iter__(self, /) -> Iterator[Any]: ...
# The last overload is for catching recursive objects whose
# nesting is too deep.
# The first overload is for catching `bytes` (as they are a subtype of
# `Sequence[int]`) and `str`. As `str` is a recursive sequence of
# strings, it will pass through the final overload otherwise
@overload
def __lt__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co, /) -> NDArray[np.bool]: ...
@overload
def __lt__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co, /) -> NDArray[np.bool]: ...
@overload
def __lt__(self: NDArray[datetime64], other: _ArrayLikeDT64_co, /) -> NDArray[np.bool]: ...
@overload
def __lt__(self: NDArray[object_], other: Any, /) -> NDArray[np.bool]: ...
@overload
def __lt__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> NDArray[np.bool]: ...
@overload
def __le__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co, /) -> NDArray[np.bool]: ...
@overload
def __le__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co, /) -> NDArray[np.bool]: ...
@overload
def __le__(self: NDArray[datetime64], other: _ArrayLikeDT64_co, /) -> NDArray[np.bool]: ...
@overload
def __le__(self: NDArray[object_], other: Any, /) -> NDArray[np.bool]: ...
@overload
def __le__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> NDArray[np.bool]: ...
@overload
def __gt__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co, /) -> NDArray[np.bool]: ...
@overload
def __gt__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co, /) -> NDArray[np.bool]: ...
@overload
def __gt__(self: NDArray[datetime64], other: _ArrayLikeDT64_co, /) -> NDArray[np.bool]: ...
@overload
def __gt__(self: NDArray[object_], other: Any, /) -> NDArray[np.bool]: ...
@overload
def __gt__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> NDArray[np.bool]: ...
@overload
def __ge__(self: _ArrayNumber_co, other: _ArrayLikeNumber_co, /) -> NDArray[np.bool]: ...
@overload
def __ge__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co, /) -> NDArray[np.bool]: ...
@overload
def __ge__(self: NDArray[datetime64], other: _ArrayLikeDT64_co, /) -> NDArray[np.bool]: ...
@overload
def __ge__(self: NDArray[object_], other: Any, /) -> NDArray[np.bool]: ...
@overload
def __ge__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> NDArray[np.bool]: ...
# Unary ops
# TODO: Uncomment once https://github.com/python/mypy/issues/14070 is fixed
# @overload
# def __abs__(self: ndarray[_ShapeType, dtypes.Complex64DType], /) -> ndarray[_ShapeType, dtypes.Float32DType]: ...
# @overload
# def __abs__(self: ndarray[_ShapeType, dtypes.Complex128DType], /) -> ndarray[_ShapeType, dtypes.Float64DType]: ...
# @overload
# def __abs__(self: ndarray[_ShapeType, dtypes.CLongDoubleDType], /) -> ndarray[_ShapeType, dtypes.LongDoubleDType]: ...
# @overload
# def __abs__(self: ndarray[_ShapeType, dtype[complex128]], /) -> ndarray[_ShapeType, dtype[float64]]: ...
@overload
def __abs__(
self: ndarray[_ShapeT, dtype[complexfloating[_AnyNBitInexact]]], /
) -> ndarray[_ShapeT, dtype[floating[_AnyNBitInexact]]]: ...
@overload
def __abs__(self: _RealArrayT, /) -> _RealArrayT: ...
def __invert__(self: _IntegralArrayT, /) -> _IntegralArrayT: ... # noqa: PYI019
def __neg__(self: _NumericArrayT, /) -> _NumericArrayT: ... # noqa: PYI019
def __pos__(self: _NumericArrayT, /) -> _NumericArrayT: ... # noqa: PYI019
# Binary ops
@overload
def __matmul__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[np.bool]: ... # type: ignore[misc]
@overload
def __matmul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
def __matmul__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
@overload
def __matmul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, /) -> NDArray[floating[Any]]: ... # type: ignore[misc]
@overload
def __matmul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co, /) -> NDArray[complexfloating[Any, Any]]: ...
@overload
def __matmul__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co, /) -> NDArray[number[Any]]: ...
@overload
def __matmul__(self: NDArray[object_], other: Any, /) -> Any: ...
@overload
def __matmul__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
@overload
def __rmatmul__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[np.bool]: ... # type: ignore[misc]
@overload
def __rmatmul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
def __rmatmul__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
@overload
def __rmatmul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, /) -> NDArray[floating[Any]]: ... # type: ignore[misc]
@overload
def __rmatmul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co, /) -> NDArray[complexfloating[Any, Any]]: ...
@overload
def __rmatmul__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co, /) -> NDArray[number[Any]]: ...
@overload
def __rmatmul__(self: NDArray[object_], other: Any, /) -> Any: ...
@overload
def __rmatmul__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
@overload
def __mod__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[int8]: ... # type: ignore[misc]
@overload
def __mod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
def __mod__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
@overload
def __mod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, /) -> NDArray[floating[Any]]: ... # type: ignore[misc]
@overload
def __mod__(self: _ArrayTD64_co, other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]], /) -> NDArray[timedelta64]: ...
@overload
def __mod__(self: NDArray[object_], other: Any, /) -> Any: ...
@overload
def __mod__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
@overload
def __rmod__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[int8]: ... # type: ignore[misc]
@overload
def __rmod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
def __rmod__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
@overload
def __rmod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, /) -> NDArray[floating[Any]]: ... # type: ignore[misc]
@overload
def __rmod__(self: _ArrayTD64_co, other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]], /) -> NDArray[timedelta64]: ...
@overload
def __rmod__(self: NDArray[object_], other: Any, /) -> Any: ...
@overload
def __rmod__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
@overload
def __divmod__(self: NDArray[np.bool], other: _ArrayLikeBool_co) -> _2Tuple[NDArray[int8]]: ... # type: ignore[misc]
@overload
def __divmod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> _2Tuple[NDArray[unsignedinteger[Any]]]: ... # type: ignore[misc]
@overload
def __divmod__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> _2Tuple[NDArray[signedinteger[Any]]]: ... # type: ignore[misc]
@overload
def __divmod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, /) -> _2Tuple[NDArray[floating[Any]]]: ... # type: ignore[misc]
@overload
def __divmod__(self: _ArrayTD64_co, other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]], /) -> tuple[NDArray[int64], NDArray[timedelta64]]: ...
@overload
def __rdivmod__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> _2Tuple[NDArray[int8]]: ... # type: ignore[misc]
@overload
def __rdivmod__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> _2Tuple[NDArray[unsignedinteger[Any]]]: ... # type: ignore[misc]
@overload
def __rdivmod__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> _2Tuple[NDArray[signedinteger[Any]]]: ... # type: ignore[misc]
@overload
def __rdivmod__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, /) -> _2Tuple[NDArray[floating[Any]]]: ... # type: ignore[misc]
@overload
def __rdivmod__(self: _ArrayTD64_co, other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]], /) -> tuple[NDArray[int64], NDArray[timedelta64]]: ...
@overload
def __add__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[np.bool]: ... # type: ignore[misc]
@overload
def __add__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
def __add__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
@overload
def __add__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, /) -> NDArray[floating[Any]]: ... # type: ignore[misc]
@overload
def __add__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co, /) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
@overload
def __add__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co, /) -> NDArray[number[Any]]: ...
@overload
def __add__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co, /) -> NDArray[timedelta64]: ... # type: ignore[misc]
@overload
def __add__(self: _ArrayTD64_co, other: _ArrayLikeDT64_co, /) -> NDArray[datetime64]: ...
@overload
def __add__(self: NDArray[datetime64], other: _ArrayLikeTD64_co, /) -> NDArray[datetime64]: ...
@overload
def __add__(self: NDArray[object_], other: Any, /) -> Any: ...
@overload
def __add__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
@overload
def __radd__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[np.bool]: ... # type: ignore[misc]
@overload
def __radd__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
def __radd__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
@overload
def __radd__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, /) -> NDArray[floating[Any]]: ... # type: ignore[misc]
@overload
def __radd__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co, /) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
@overload
def __radd__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co, /) -> NDArray[number[Any]]: ...
@overload
def __radd__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co, /) -> NDArray[timedelta64]: ... # type: ignore[misc]
@overload
def __radd__(self: _ArrayTD64_co, other: _ArrayLikeDT64_co, /) -> NDArray[datetime64]: ...
@overload
def __radd__(self: NDArray[datetime64], other: _ArrayLikeTD64_co, /) -> NDArray[datetime64]: ...
@overload
def __radd__(self: NDArray[object_], other: Any, /) -> Any: ...
@overload
def __radd__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
@overload
def __sub__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NoReturn: ...
@overload
def __sub__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
def __sub__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
@overload
def __sub__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, /) -> NDArray[floating[Any]]: ... # type: ignore[misc]
@overload
def __sub__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co, /) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
@overload
def __sub__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co, /) -> NDArray[number[Any]]: ...
@overload
def __sub__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co, /) -> NDArray[timedelta64]: ... # type: ignore[misc]
@overload
def __sub__(self: NDArray[datetime64], other: _ArrayLikeTD64_co, /) -> NDArray[datetime64]: ...
@overload
def __sub__(self: NDArray[datetime64], other: _ArrayLikeDT64_co, /) -> NDArray[timedelta64]: ...
@overload
def __sub__(self: NDArray[object_], other: Any, /) -> Any: ...
@overload
def __sub__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
@overload
def __rsub__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NoReturn: ...
@overload
def __rsub__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
def __rsub__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
@overload
def __rsub__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, /) -> NDArray[floating[Any]]: ... # type: ignore[misc]
@overload
def __rsub__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co, /) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
@overload
def __rsub__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co, /) -> NDArray[number[Any]]: ...
@overload
def __rsub__(self: _ArrayTD64_co, other: _ArrayLikeTD64_co, /) -> NDArray[timedelta64]: ... # type: ignore[misc]
@overload
def __rsub__(self: _ArrayTD64_co, other: _ArrayLikeDT64_co, /) -> NDArray[datetime64]: ... # type: ignore[misc]
@overload
def __rsub__(self: NDArray[datetime64], other: _ArrayLikeDT64_co, /) -> NDArray[timedelta64]: ...
@overload
def __rsub__(self: NDArray[object_], other: Any, /) -> Any: ...
@overload
def __rsub__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
@overload
def __mul__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[np.bool]: ... # type: ignore[misc]
@overload
def __mul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
def __mul__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
@overload
def __mul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, /) -> NDArray[floating[Any]]: ... # type: ignore[misc]
@overload
def __mul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co, /) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
@overload
def __mul__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co, /) -> NDArray[number[Any]]: ...
@overload
def __mul__(self: _ArrayTD64_co, other: _ArrayLikeFloat_co, /) -> NDArray[timedelta64]: ...
@overload
def __mul__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co, /) -> NDArray[timedelta64]: ...
@overload
def __mul__(self: NDArray[object_], other: Any, /) -> Any: ...
@overload
def __mul__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
@overload
def __rmul__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[np.bool]: ... # type: ignore[misc]
@overload
def __rmul__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
def __rmul__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
@overload
def __rmul__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, /) -> NDArray[floating[Any]]: ... # type: ignore[misc]
@overload
def __rmul__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co, /) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
@overload
def __rmul__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co, /) -> NDArray[number[Any]]: ...
@overload
def __rmul__(self: _ArrayTD64_co, other: _ArrayLikeFloat_co, /) -> NDArray[timedelta64]: ...
@overload
def __rmul__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co, /) -> NDArray[timedelta64]: ...
@overload
def __rmul__(self: NDArray[object_], other: Any, /) -> Any: ...
@overload
def __rmul__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
@overload
def __floordiv__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[int8]: ... # type: ignore[misc]
@overload
def __floordiv__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
def __floordiv__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
@overload
def __floordiv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, /) -> NDArray[floating[Any]]: ... # type: ignore[misc]
@overload
def __floordiv__(self: NDArray[timedelta64], other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]], /) -> NDArray[int64]: ...
@overload
def __floordiv__(self: NDArray[timedelta64], other: _ArrayLikeBool_co, /) -> NoReturn: ...
@overload
def __floordiv__(self: NDArray[timedelta64], other: _ArrayLikeFloat_co, /) -> NDArray[timedelta64]: ...
@overload
def __floordiv__(self: NDArray[object_], other: Any, /) -> Any: ...
@overload
def __floordiv__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
@overload
def __rfloordiv__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[int8]: ... # type: ignore[misc]
@overload
def __rfloordiv__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
def __rfloordiv__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
@overload
def __rfloordiv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, /) -> NDArray[floating[Any]]: ... # type: ignore[misc]
@overload
def __rfloordiv__(self: NDArray[timedelta64], other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]], /) -> NDArray[int64]: ...
@overload
def __rfloordiv__(self: NDArray[np.bool], other: _ArrayLikeTD64_co, /) -> NoReturn: ...
@overload
def __rfloordiv__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co, /) -> NDArray[timedelta64]: ...
@overload
def __rfloordiv__(self: NDArray[object_], other: Any, /) -> Any: ...
@overload
def __rfloordiv__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
@overload
def __pow__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[int8]: ... # type: ignore[misc]
@overload
def __pow__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
def __pow__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
@overload
def __pow__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, /) -> NDArray[floating[Any]]: ... # type: ignore[misc]
@overload
def __pow__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co, /) -> NDArray[complexfloating[Any, Any]]: ...
@overload
def __pow__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co, /) -> NDArray[number[Any]]: ...
@overload
def __pow__(self: NDArray[object_], other: Any, /) -> Any: ...
@overload
def __pow__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
@overload
def __rpow__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[int8]: ... # type: ignore[misc]
@overload
def __rpow__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
def __rpow__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger[Any]]: ... # type: ignore[misc]
@overload
def __rpow__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, /) -> NDArray[floating[Any]]: ... # type: ignore[misc]
@overload
def __rpow__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co, /) -> NDArray[complexfloating[Any, Any]]: ...
@overload
def __rpow__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co, /) -> NDArray[number[Any]]: ...
@overload
def __rpow__(self: NDArray[object_], other: Any, /) -> Any: ...
@overload
def __rpow__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
@overload
def __truediv__(self: _ArrayInt_co, other: _ArrayInt_co, /) -> NDArray[float64]: ... # type: ignore[misc]
@overload
def __truediv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, /) -> NDArray[floating[Any]]: ... # type: ignore[misc]
@overload
def __truediv__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co, /) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
@overload
def __truediv__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co, /) -> NDArray[number[Any]]: ...
@overload
def __truediv__(self: NDArray[timedelta64], other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]], /) -> NDArray[float64]: ...
@overload
def __truediv__(self: NDArray[timedelta64], other: _ArrayLikeBool_co, /) -> NoReturn: ...
@overload
def __truediv__(self: NDArray[timedelta64], other: _ArrayLikeFloat_co, /) -> NDArray[timedelta64]: ...
@overload
def __truediv__(self: NDArray[object_], other: Any, /) -> Any: ...
@overload
def __truediv__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
@overload
def __rtruediv__(self: _ArrayInt_co, other: _ArrayInt_co, /) -> NDArray[float64]: ... # type: ignore[misc]
@overload
def __rtruediv__(self: _ArrayFloat_co, other: _ArrayLikeFloat_co, /) -> NDArray[floating[Any]]: ... # type: ignore[misc]
@overload
def __rtruediv__(self: _ArrayComplex_co, other: _ArrayLikeComplex_co, /) -> NDArray[complexfloating[Any, Any]]: ... # type: ignore[misc]
@overload
def __rtruediv__(self: NDArray[number[Any]], other: _ArrayLikeNumber_co, /) -> NDArray[number[Any]]: ...
@overload
def __rtruediv__(self: NDArray[timedelta64], other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]], /) -> NDArray[float64]: ...
@overload
def __rtruediv__(self: NDArray[np.bool], other: _ArrayLikeTD64_co, /) -> NoReturn: ...
@overload
def __rtruediv__(self: _ArrayFloat_co, other: _ArrayLikeTD64_co, /) -> NDArray[timedelta64]: ...
@overload
def __rtruediv__(self: NDArray[object_], other: Any, /) -> Any: ...
@overload
def __rtruediv__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
@overload
def __lshift__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[int8]: ... # type: ignore[misc]
@overload
def __lshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
def __lshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger[Any]]: ...
@overload
def __lshift__(self: NDArray[object_], other: Any, /) -> Any: ...
@overload
def __lshift__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
@overload
def __rlshift__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[int8]: ... # type: ignore[misc]
@overload
def __rlshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
def __rlshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger[Any]]: ...
@overload
def __rlshift__(self: NDArray[object_], other: Any, /) -> Any: ...
@overload
def __rlshift__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
@overload
def __rshift__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[int8]: ... # type: ignore[misc]
@overload
def __rshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
def __rshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger[Any]]: ...
@overload
def __rshift__(self: NDArray[object_], other: Any, /) -> Any: ...
@overload
def __rshift__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
@overload
def __rrshift__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[int8]: ... # type: ignore[misc]
@overload
def __rrshift__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
def __rrshift__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger[Any]]: ...
@overload
def __rrshift__(self: NDArray[object_], other: Any, /) -> Any: ...
@overload
def __rrshift__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
@overload
def __and__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[np.bool]: ... # type: ignore[misc]
@overload
def __and__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
def __and__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger[Any]]: ...
@overload
def __and__(self: NDArray[object_], other: Any, /) -> Any: ...
@overload
def __and__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
@overload
def __rand__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[np.bool]: ... # type: ignore[misc]
@overload
def __rand__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
def __rand__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger[Any]]: ...
@overload
def __rand__(self: NDArray[object_], other: Any, /) -> Any: ...
@overload
def __rand__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
@overload
def __xor__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[np.bool]: ... # type: ignore[misc]
@overload
def __xor__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
def __xor__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger[Any]]: ...
@overload
def __xor__(self: NDArray[object_], other: Any, /) -> Any: ...
@overload
def __xor__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
@overload
def __rxor__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[np.bool]: ... # type: ignore[misc]
@overload
def __rxor__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
def __rxor__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger[Any]]: ...
@overload
def __rxor__(self: NDArray[object_], other: Any, /) -> Any: ...
@overload
def __rxor__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
@overload
def __or__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[np.bool]: ... # type: ignore[misc]
@overload
def __or__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
def __or__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger[Any]]: ...
@overload
def __or__(self: NDArray[object_], other: Any, /) -> Any: ...
@overload
def __or__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
@overload
def __ror__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> NDArray[np.bool]: ... # type: ignore[misc]
@overload
def __ror__(self: _ArrayUInt_co, other: _ArrayLikeUInt_co, /) -> NDArray[unsignedinteger[Any]]: ... # type: ignore[misc]
@overload
def __ror__(self: _ArrayInt_co, other: _ArrayLikeInt_co, /) -> NDArray[signedinteger[Any]]: ...
@overload
def __ror__(self: NDArray[object_], other: Any, /) -> Any: ...
@overload
def __ror__(self: NDArray[Any], other: _ArrayLikeObject_co, /) -> Any: ...
# `np.generic` does not support inplace operations
# NOTE: Inplace ops generally use "same_kind" casting w.r.t. to the left
# operand. An exception to this rule are unsigned integers though, which
# also accepts a signed integer for the right operand as long it is a 0D
# object and its value is >= 0
# NOTE: Due to a mypy bug, overloading on e.g. `self: NDArray[SCT_floating]` won't
# work, as this will lead to `false negatives` when using these inplace ops.
@overload
def __iadd__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __iadd__(
self: NDArray[unsignedinteger[Any]],
other: _ArrayLikeUInt_co | _IntLike_co,
/,
) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __iadd__(self: NDArray[signedinteger[Any]], other: _ArrayLikeInt_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __iadd__(self: NDArray[float64], other: _ArrayLikeFloat_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __iadd__(self: NDArray[floating[Any]], other: _ArrayLikeFloat_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __iadd__(self: NDArray[complex128], other: _ArrayLikeComplex_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __iadd__(self: NDArray[complexfloating[Any]], other: _ArrayLikeComplex_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __iadd__(self: NDArray[timedelta64], other: _ArrayLikeTD64_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __iadd__(self: NDArray[datetime64], other: _ArrayLikeTD64_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __iadd__(self: NDArray[object_], other: Any, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __isub__(
self: NDArray[unsignedinteger[Any]],
other: _ArrayLikeUInt_co | _IntLike_co,
/,
) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __isub__(self: NDArray[signedinteger[Any]], other: _ArrayLikeInt_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __isub__(self: NDArray[float64], other: _ArrayLikeFloat_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __isub__(self: NDArray[floating[Any]], other: _ArrayLikeFloat_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __isub__(self: NDArray[complex128], other: _ArrayLikeComplex_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __isub__(self: NDArray[complexfloating[Any]], other: _ArrayLikeComplex_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __isub__(self: NDArray[timedelta64], other: _ArrayLikeTD64_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __isub__(self: NDArray[datetime64], other: _ArrayLikeTD64_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __isub__(self: NDArray[object_], other: Any, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __imul__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __imul__(
self: NDArray[unsignedinteger[Any]],
other: _ArrayLikeUInt_co | _IntLike_co,
/,
) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __imul__(self: NDArray[signedinteger[Any]], other: _ArrayLikeInt_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __imul__(self: NDArray[float64], other: _ArrayLikeFloat_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __imul__(self: NDArray[floating[Any]], other: _ArrayLikeFloat_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __imul__(self: NDArray[complex128], other: _ArrayLikeComplex_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __imul__(self: NDArray[complexfloating[Any]], other: _ArrayLikeComplex_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __imul__(self: NDArray[timedelta64], other: _ArrayLikeFloat_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __imul__(self: NDArray[object_], other: Any, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __itruediv__(self: NDArray[float64], other: _ArrayLikeFloat_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __itruediv__(self: NDArray[floating[Any]], other: _ArrayLikeFloat_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __itruediv__(self: NDArray[complex128], other: _ArrayLikeComplex_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __itruediv__(
self: NDArray[complexfloating[Any]],
other: _ArrayLikeComplex_co,
/,
) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __itruediv__(self: NDArray[timedelta64], other: _ArrayLikeInt, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __itruediv__(self: NDArray[object_], other: Any, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __ifloordiv__(
self: NDArray[unsignedinteger[Any]],
other: _ArrayLikeUInt_co | _IntLike_co,
/,
) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __ifloordiv__(self: NDArray[signedinteger[Any]], other: _ArrayLikeInt_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __ifloordiv__(self: NDArray[float64], other: _ArrayLikeFloat_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __ifloordiv__(self: NDArray[floating[Any]], other: _ArrayLikeFloat_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __ifloordiv__(self: NDArray[complex128], other: _ArrayLikeComplex_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __ifloordiv__(
self: NDArray[complexfloating[Any]],
other: _ArrayLikeComplex_co,
/,
) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __ifloordiv__(self: NDArray[timedelta64], other: _ArrayLikeInt, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __ifloordiv__(self: NDArray[object_], other: Any, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __ipow__(
self: NDArray[unsignedinteger[Any]],
other: _ArrayLikeUInt_co | _IntLike_co,
/,
) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __ipow__(self: NDArray[signedinteger[Any]], other: _ArrayLikeInt_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __ipow__(self: NDArray[float64], other: _ArrayLikeFloat_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __ipow__(self: NDArray[floating[Any]], other: _ArrayLikeFloat_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __ipow__(self: NDArray[complex128], other: _ArrayLikeComplex_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __ipow__(self: NDArray[complexfloating[Any]], other: _ArrayLikeComplex_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __ipow__(self: NDArray[object_], other: Any, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __imod__(
self: NDArray[unsignedinteger[Any]],
other: _ArrayLikeUInt_co | _IntLike_co,
/,
) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __imod__(self: NDArray[signedinteger[Any]], other: _ArrayLikeInt_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __imod__(self: NDArray[float64], other: _ArrayLikeFloat_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __imod__(self: NDArray[floating[Any]], other: _ArrayLikeFloat_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __imod__(
self: NDArray[timedelta64],
other: _SupportsArray[_dtype[timedelta64]] | _NestedSequence[_SupportsArray[_dtype[timedelta64]]],
/,
) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __imod__(self: NDArray[object_], other: Any, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __ilshift__(
self: NDArray[unsignedinteger[Any]],
other: _ArrayLikeUInt_co | _IntLike_co,
/,
) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __ilshift__(self: NDArray[signedinteger[Any]], other: _ArrayLikeInt_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __ilshift__(self: NDArray[object_], other: Any, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __irshift__(
self: NDArray[unsignedinteger[Any]],
other: _ArrayLikeUInt_co | _IntLike_co,
/,
) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __irshift__(self: NDArray[signedinteger[Any]], other: _ArrayLikeInt_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __irshift__(self: NDArray[object_], other: Any, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __iand__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __iand__(
self: NDArray[unsignedinteger[Any]],
other: _ArrayLikeUInt_co | _IntLike_co,
/,
) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __iand__(self: NDArray[signedinteger[Any]], other: _ArrayLikeInt_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __iand__(self: NDArray[object_], other: Any, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __ixor__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __ixor__(
self: NDArray[unsignedinteger[Any]],
other: _ArrayLikeUInt_co | _IntLike_co,
/,
) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __ixor__(self: NDArray[signedinteger[Any]], other: _ArrayLikeInt_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __ixor__(self: NDArray[object_], other: Any, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __ior__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __ior__(
self: NDArray[unsignedinteger[Any]],
other: _ArrayLikeUInt_co | _IntLike_co,
/,
) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __ior__(self: NDArray[signedinteger[Any]], other: _ArrayLikeInt_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __ior__(self: NDArray[object_], other: Any, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __imatmul__(self: NDArray[np.bool], other: _ArrayLikeBool_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __imatmul__(self: NDArray[unsignedinteger[Any]], other: _ArrayLikeUInt_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __imatmul__(self: NDArray[signedinteger[Any]], other: _ArrayLikeInt_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __imatmul__(self: NDArray[float64], other: _ArrayLikeFloat_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __imatmul__(self: NDArray[floating[Any]], other: _ArrayLikeFloat_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __imatmul__(self: NDArray[complex128], other: _ArrayLikeComplex_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __imatmul__(self: NDArray[complexfloating[Any]], other: _ArrayLikeComplex_co, /) -> ndarray[_ShapeT_co, _DType_co]: ...
@overload
def __imatmul__(self: NDArray[object_], other: Any, /) -> ndarray[_ShapeT_co, _DType_co]: ...
def __dlpack__(
self: NDArray[number[Any]],
/,
*,
stream: int | Any | None = None,
max_version: tuple[int, int] | None = None,
dl_device: tuple[int, int] | None = None,
copy: builtins.bool | None = None,
) -> CapsuleType: ...
def __dlpack_device__(self, /) -> tuple[L[1], L[0]]: ...
# Keep `dtype` at the bottom to avoid name conflicts with `np.dtype`
@property
def dtype(self) -> _DType_co: ...
# NOTE: while `np.generic` is not technically an instance of `ABCMeta`,
# the `@abstractmethod` decorator is herein used to (forcefully) deny
# the creation of `np.generic` instances.
# The `# type: ignore` comments are necessary to silence mypy errors regarding
# the missing `ABCMeta` metaclass.
# See https://github.com/numpy/numpy-stubs/pull/80 for more details.
class generic(_ArrayOrScalarCommon, Generic[_ItemT_co]):
@abstractmethod
def __init__(self, *args: Any, **kwargs: Any) -> None: ...
def __hash__(self) -> int: ...
@overload
def __array__(self, dtype: None = None, /) -> ndarray[tuple[()], dtype[Self]]: ...
@overload
def __array__(self, dtype: _DType, /) -> ndarray[tuple[()], _DType]: ...
if sys.version_info >= (3, 12):
def __buffer__(self, flags: int, /) -> memoryview: ...
@property
def base(self) -> None: ...
@property
def ndim(self) -> L[0]: ...
@property
def size(self) -> L[1]: ...
@property
def shape(self) -> tuple[()]: ...
@property
def strides(self) -> tuple[()]: ...
@property
def flat(self) -> flatiter[ndarray[tuple[int], dtype[Self]]]: ...
@overload
def item(self, /) -> _ItemT_co: ...
@overload
def item(self, arg0: L[0, -1] | tuple[L[0, -1]] | tuple[()] = ..., /) -> _ItemT_co: ...
def tolist(self, /) -> _ItemT_co: ...
def byteswap(self, inplace: L[False] = ...) -> Self: ...
@overload
def astype(
self,
dtype: _DTypeLike[_SCT],
order: _OrderKACF = ...,
casting: _CastingKind = ...,
subok: builtins.bool = ...,
copy: builtins.bool | _CopyMode = ...,
) -> _SCT: ...
@overload
def astype(
self,
dtype: DTypeLike,
order: _OrderKACF = ...,
casting: _CastingKind = ...,
subok: builtins.bool = ...,
copy: builtins.bool | _CopyMode = ...,
) -> Any: ...
# NOTE: `view` will perform a 0D->scalar cast,
# thus the array `type` is irrelevant to the output type
@overload
def view(self, type: type[NDArray[Any]] = ...) -> Self: ...
@overload
def view(
self,
dtype: _DTypeLike[_SCT],
type: type[NDArray[Any]] = ...,
) -> _SCT: ...
@overload
def view(
self,
dtype: DTypeLike,
type: type[NDArray[Any]] = ...,
) -> Any: ...
@overload
def getfield(
self,
dtype: _DTypeLike[_SCT],
offset: SupportsIndex = ...
) -> _SCT: ...
@overload
def getfield(
self,
dtype: DTypeLike,
offset: SupportsIndex = ...
) -> Any: ...
@overload
def take( # type: ignore[misc]
self,
indices: _IntLike_co,
axis: None | SupportsIndex = ...,
out: None = ...,
mode: _ModeKind = ...,
) -> Self: ...
@overload
def take( # type: ignore[misc]
self,
indices: _ArrayLikeInt_co,
axis: None | SupportsIndex = ...,
out: None = ...,
mode: _ModeKind = ...,
) -> NDArray[Self]: ...
@overload
def take(
self,
indices: _ArrayLikeInt_co,
axis: None | SupportsIndex = ...,
out: _ArrayT = ...,
mode: _ModeKind = ...,
) -> _ArrayT: ...
def repeat(self, repeats: _ArrayLikeInt_co, axis: None | SupportsIndex = ...) -> NDArray[Self]: ...
def flatten(self, /, order: _OrderKACF = "C") -> ndarray[tuple[int], dtype[Self]]: ...
def ravel(self, /, order: _OrderKACF = "C") -> ndarray[tuple[int], dtype[Self]]: ...
@overload # (() | [])
def reshape(
self,
shape: tuple[()] | list[Never],
/,
*,
order: _OrderACF = "C",
copy: builtins.bool | None = None,
) -> Self: ...
@overload # ((1, *(1, ...))@_ShapeType)
def reshape(
self,
shape: _1NShapeT,
/,
*,
order: _OrderACF = "C",
copy: builtins.bool | None = None,
) -> ndarray[_1NShapeT, dtype[Self]]: ...
@overload # (Sequence[index, ...]) # not recommended
def reshape(
self,
shape: Sequence[SupportsIndex],
/,
*,
order: _OrderACF = "C",
copy: builtins.bool | None = None,
) -> Self | ndarray[tuple[L[1], ...], dtype[Self]]: ...
@overload # _(index)
def reshape(
self,
size1: SupportsIndex,
/,
*,
order: _OrderACF = "C",
copy: builtins.bool | None = None,
) -> ndarray[tuple[L[1]], dtype[Self]]: ...
@overload # _(index, index)
def reshape(
self,
size1: SupportsIndex,
size2: SupportsIndex,
/,
*,
order: _OrderACF = "C",
copy: builtins.bool | None = None,
) -> ndarray[tuple[L[1], L[1]], dtype[Self]]: ...
@overload # _(index, index, index)
def reshape(
self,
size1: SupportsIndex,
size2: SupportsIndex,
size3: SupportsIndex,
/,
*,
order: _OrderACF = "C",
copy: builtins.bool | None = None,
) -> ndarray[tuple[L[1], L[1], L[1]], dtype[Self]]: ...
@overload # _(index, index, index, index)
def reshape(
self,
size1: SupportsIndex,
size2: SupportsIndex,
size3: SupportsIndex,
size4: SupportsIndex,
/,
*,
order: _OrderACF = "C",
copy: builtins.bool | None = None,
) -> ndarray[tuple[L[1], L[1], L[1], L[1]], dtype[Self]]: ...
@overload # _(index, index, index, index, index, *index) # ndim >= 5
def reshape(
self,
size1: SupportsIndex,
size2: SupportsIndex,
size3: SupportsIndex,
size4: SupportsIndex,
size5: SupportsIndex,
/,
*sizes6_: SupportsIndex,
order: _OrderACF = "C",
copy: builtins.bool | None = None,
) -> ndarray[tuple[L[1], L[1], L[1], L[1], L[1], Unpack[tuple[L[1], ...]]], dtype[Self]]: ...
def squeeze(self, axis: None | L[0] | tuple[()] = ...) -> Self: ...
def transpose(self, axes: None | tuple[()] = ..., /) -> Self: ...
@overload
def all(
self,
/,
axis: L[0, -1] | tuple[()] | None = None,
out: None = None,
keepdims: SupportsIndex = False,
*,
where: builtins.bool | np.bool | ndarray[tuple[()], dtype[np.bool]] = True
) -> np.bool: ...
@overload
def all(
self,
/,
axis: L[0, -1] | tuple[()] | None,
out: ndarray[tuple[()], dtype[_SCT]],
keepdims: SupportsIndex = False,
*,
where: builtins.bool | np.bool | ndarray[tuple[()], dtype[np.bool]] = True,
) -> _SCT: ...
@overload
def all(
self,
/,
axis: L[0, -1] | tuple[()] | None = None,
*,
out: ndarray[tuple[()], dtype[_SCT]],
keepdims: SupportsIndex = False,
where: builtins.bool | np.bool | ndarray[tuple[()], dtype[np.bool]] = True,
) -> _SCT: ...
@overload
def any(
self,
/,
axis: L[0, -1] | tuple[()] | None = None,
out: None = None,
keepdims: SupportsIndex = False,
*,
where: builtins.bool | np.bool | ndarray[tuple[()], dtype[np.bool]] = True
) -> np.bool: ...
@overload
def any(
self,
/,
axis: L[0, -1] | tuple[()] | None,
out: ndarray[tuple[()], dtype[_SCT]],
keepdims: SupportsIndex = False,
*,
where: builtins.bool | np.bool | ndarray[tuple[()], dtype[np.bool]] = True,
) -> _SCT: ...
@overload
def any(
self,
/,
axis: L[0, -1] | tuple[()] | None = None,
*,
out: ndarray[tuple[()], dtype[_SCT]],
keepdims: SupportsIndex = False,
where: builtins.bool | np.bool | ndarray[tuple[()], dtype[np.bool]] = True,
) -> _SCT: ...
# Keep `dtype` at the bottom to avoid name conflicts with `np.dtype`
@property
def dtype(self) -> _dtype[Self]: ...
class number(generic[_NumberItemT_co], Generic[_NBit, _NumberItemT_co]):
@abstractmethod
def __init__(self, value: _NumberItemT_co, /) -> None: ...
def __class_getitem__(cls, item: Any, /) -> GenericAlias: ...
def __neg__(self) -> Self: ...
def __pos__(self) -> Self: ...
def __abs__(self) -> Self: ...
__add__: _NumberOp
__radd__: _NumberOp
__sub__: _NumberOp
__rsub__: _NumberOp
__mul__: _NumberOp
__rmul__: _NumberOp
__floordiv__: _NumberOp
__rfloordiv__: _NumberOp
__pow__: _NumberOp
__rpow__: _NumberOp
__truediv__: _NumberOp
__rtruediv__: _NumberOp
__lt__: _ComparisonOpLT[_NumberLike_co, _ArrayLikeNumber_co]
__le__: _ComparisonOpLE[_NumberLike_co, _ArrayLikeNumber_co]
__gt__: _ComparisonOpGT[_NumberLike_co, _ArrayLikeNumber_co]
__ge__: _ComparisonOpGE[_NumberLike_co, _ArrayLikeNumber_co]
class bool(generic[_BoolItemT_co], Generic[_BoolItemT_co]):
@property
def itemsize(self) -> L[1]: ...
@property
def nbytes(self) -> L[1]: ...
@property
def real(self) -> Self: ...
@property
def imag(self) -> np.bool[L[False]]: ...
@overload
def __init__(self: np.bool[L[False]], /) -> None: ...
@overload
def __init__(self: np.bool[L[False]], value: _Falsy = ..., /) -> None: ...
@overload
def __init__(self: np.bool[L[True]], value: _Truthy, /) -> None: ...
@overload
def __init__(self, value: object, /) -> None: ...
def __bool__(self, /) -> _BoolItemT_co: ...
@overload
def __int__(self: np.bool[L[False]], /) -> L[0]: ...
@overload
def __int__(self: np.bool[L[True]], /) -> L[1]: ...
@overload
def __int__(self, /) -> L[0, 1]: ...
@deprecated("In future, it will be an error for 'np.bool' scalars to be interpreted as an index")
def __index__(self, /) -> L[0, 1]: ...
def __abs__(self) -> Self: ...
@overload
def __invert__(self: np.bool[L[False]], /) -> np.bool[L[True]]: ...
@overload
def __invert__(self: np.bool[L[True]], /) -> np.bool[L[False]]: ...
@overload
def __invert__(self, /) -> np.bool: ...
__add__: _BoolOp[np.bool]
__radd__: _BoolOp[np.bool]
__sub__: _BoolSub
__rsub__: _BoolSub
__mul__: _BoolOp[np.bool]
__rmul__: _BoolOp[np.bool]
__truediv__: _BoolTrueDiv
__rtruediv__: _BoolTrueDiv
__floordiv__: _BoolOp[int8]
__rfloordiv__: _BoolOp[int8]
__pow__: _BoolOp[int8]
__rpow__: _BoolOp[int8]
__lshift__: _BoolBitOp[int8]
__rlshift__: _BoolBitOp[int8]
__rshift__: _BoolBitOp[int8]
__rrshift__: _BoolBitOp[int8]
@overload
def __and__(self: np.bool[L[False]], other: builtins.bool | np.bool, /) -> np.bool[L[False]]: ...
@overload
def __and__(self, other: L[False] | np.bool[L[False]], /) -> np.bool[L[False]]: ...
@overload
def __and__(self, other: L[True] | np.bool[L[True]], /) -> Self: ...
@overload
def __and__(self, other: builtins.bool | np.bool, /) -> np.bool: ...
@overload
def __and__(self, other: _IntegerT, /) -> _IntegerT: ...
@overload
def __and__(self, other: int, /) -> np.bool | intp: ...
__rand__ = __and__
@overload
def __xor__(self: np.bool[L[False]], other: _BoolItemT | np.bool[_BoolItemT], /) -> np.bool[_BoolItemT]: ...
@overload
def __xor__(self: np.bool[L[True]], other: L[True] | np.bool[L[True]], /) -> np.bool[L[False]]: ...
@overload
def __xor__(self, other: L[False] | np.bool[L[False]], /) -> Self: ...
@overload
def __xor__(self, other: builtins.bool | np.bool, /) -> np.bool: ...
@overload
def __xor__(self, other: _IntegerT, /) -> _IntegerT: ...
@overload
def __xor__(self, other: int, /) -> np.bool | intp: ...
__rxor__ = __xor__
@overload
def __or__(self: np.bool[L[True]], other: builtins.bool | np.bool, /) -> np.bool[L[True]]: ...
@overload
def __or__(self, other: L[False] | np.bool[L[False]], /) -> Self: ...
@overload
def __or__(self, other: L[True] | np.bool[L[True]], /) -> np.bool[L[True]]: ...
@overload
def __or__(self, other: builtins.bool | np.bool, /) -> np.bool: ...
@overload
def __or__(self, other: _IntegerT, /) -> _IntegerT: ...
@overload
def __or__(self, other: int, /) -> np.bool | intp: ...
__ror__ = __or__
__mod__: _BoolMod
__rmod__: _BoolMod
__divmod__: _BoolDivMod
__rdivmod__: _BoolDivMod
__lt__: _ComparisonOpLT[_NumberLike_co, _ArrayLikeNumber_co]
__le__: _ComparisonOpLE[_NumberLike_co, _ArrayLikeNumber_co]
__gt__: _ComparisonOpGT[_NumberLike_co, _ArrayLikeNumber_co]
__ge__: _ComparisonOpGE[_NumberLike_co, _ArrayLikeNumber_co]
# NOTE: This should _not_ be `Final` or a `TypeAlias`
bool_ = bool
# NOTE: The `object_` constructor returns the passed object, so instances with type
# `object_` cannot exists (at runtime).
# NOTE: Because mypy has some long-standing bugs related to `__new__`, `object_` can't
# be made generic.
@final
class object_(_RealMixin, generic):
@overload
def __new__(cls, nothing_to_see_here: None = None, /) -> None: ... # type: ignore[misc]
@overload
def __new__(cls, stringy: _AnyStr, /) -> _AnyStr: ... # type: ignore[misc]
@overload
def __new__(cls, array: ndarray[_ShapeT, Any], /) -> ndarray[_ShapeT, dtype[Self]]: ... # type: ignore[misc]
@overload
def __new__(cls, sequence: SupportsLenAndGetItem[object], /) -> NDArray[Self]: ... # type: ignore[misc]
@overload
def __new__(cls, value: _T, /) -> _T: ... # type: ignore[misc]
@overload # catch-all
def __new__(cls, value: Any = ..., /) -> object | NDArray[Self]: ... # type: ignore[misc]
def __init__(self, value: object = ..., /) -> None: ...
if sys.version_info >= (3, 12):
def __release_buffer__(self, buffer: memoryview, /) -> None: ...
class integer(_IntegralMixin, _RoundMixin, number[_NBit, int]):
@abstractmethod
def __init__(self, value: _ConvertibleToInt = ..., /) -> None: ...
# NOTE: `bit_count` and `__index__` are technically defined in the concrete subtypes
def bit_count(self, /) -> int: ...
def __index__(self, /) -> int: ...
def __invert__(self, /) -> Self: ...
__truediv__: _IntTrueDiv[_NBit]
__rtruediv__: _IntTrueDiv[_NBit]
def __mod__(self, value: _IntLike_co, /) -> integer[Any]: ...
def __rmod__(self, value: _IntLike_co, /) -> integer[Any]: ...
# Ensure that objects annotated as `integer` support bit-wise operations
def __lshift__(self, other: _IntLike_co, /) -> integer[Any]: ...
def __rlshift__(self, other: _IntLike_co, /) -> integer[Any]: ...
def __rshift__(self, other: _IntLike_co, /) -> integer[Any]: ...
def __rrshift__(self, other: _IntLike_co, /) -> integer[Any]: ...
def __and__(self, other: _IntLike_co, /) -> integer[Any]: ...
def __rand__(self, other: _IntLike_co, /) -> integer[Any]: ...
def __or__(self, other: _IntLike_co, /) -> integer[Any]: ...
def __ror__(self, other: _IntLike_co, /) -> integer[Any]: ...
def __xor__(self, other: _IntLike_co, /) -> integer[Any]: ...
def __rxor__(self, other: _IntLike_co, /) -> integer[Any]: ...
class signedinteger(integer[_NBit1]):
def __init__(self, value: _ConvertibleToInt = ..., /) -> None: ...
__add__: _SignedIntOp[_NBit1]
__radd__: _SignedIntOp[_NBit1]
__sub__: _SignedIntOp[_NBit1]
__rsub__: _SignedIntOp[_NBit1]
__mul__: _SignedIntOp[_NBit1]
__rmul__: _SignedIntOp[_NBit1]
__floordiv__: _SignedIntOp[_NBit1]
__rfloordiv__: _SignedIntOp[_NBit1]
__pow__: _SignedIntOp[_NBit1]
__rpow__: _SignedIntOp[_NBit1]
__lshift__: _SignedIntBitOp[_NBit1]
__rlshift__: _SignedIntBitOp[_NBit1]
__rshift__: _SignedIntBitOp[_NBit1]
__rrshift__: _SignedIntBitOp[_NBit1]
__and__: _SignedIntBitOp[_NBit1]
__rand__: _SignedIntBitOp[_NBit1]
__xor__: _SignedIntBitOp[_NBit1]
__rxor__: _SignedIntBitOp[_NBit1]
__or__: _SignedIntBitOp[_NBit1]
__ror__: _SignedIntBitOp[_NBit1]
__mod__: _SignedIntMod[_NBit1]
__rmod__: _SignedIntMod[_NBit1]
__divmod__: _SignedIntDivMod[_NBit1]
__rdivmod__: _SignedIntDivMod[_NBit1]
int8 = signedinteger[_8Bit]
int16 = signedinteger[_16Bit]
int32 = signedinteger[_32Bit]
int64 = signedinteger[_64Bit]
byte = signedinteger[_NBitByte]
short = signedinteger[_NBitShort]
intc = signedinteger[_NBitIntC]
intp = signedinteger[_NBitIntP]
int_ = intp
long = signedinteger[_NBitLong]
longlong = signedinteger[_NBitLongLong]
class unsignedinteger(integer[_NBit1]):
# NOTE: `uint64 + signedinteger -> float64`
def __init__(self, value: _ConvertibleToInt = ..., /) -> None: ...
__add__: _UnsignedIntOp[_NBit1]
__radd__: _UnsignedIntOp[_NBit1]
__sub__: _UnsignedIntOp[_NBit1]
__rsub__: _UnsignedIntOp[_NBit1]
__mul__: _UnsignedIntOp[_NBit1]
__rmul__: _UnsignedIntOp[_NBit1]
__floordiv__: _UnsignedIntOp[_NBit1]
__rfloordiv__: _UnsignedIntOp[_NBit1]
__pow__: _UnsignedIntOp[_NBit1]
__rpow__: _UnsignedIntOp[_NBit1]
__lshift__: _UnsignedIntBitOp[_NBit1]
__rlshift__: _UnsignedIntBitOp[_NBit1]
__rshift__: _UnsignedIntBitOp[_NBit1]
__rrshift__: _UnsignedIntBitOp[_NBit1]
__and__: _UnsignedIntBitOp[_NBit1]
__rand__: _UnsignedIntBitOp[_NBit1]
__xor__: _UnsignedIntBitOp[_NBit1]
__rxor__: _UnsignedIntBitOp[_NBit1]
__or__: _UnsignedIntBitOp[_NBit1]
__ror__: _UnsignedIntBitOp[_NBit1]
__mod__: _UnsignedIntMod[_NBit1]
__rmod__: _UnsignedIntMod[_NBit1]
__divmod__: _UnsignedIntDivMod[_NBit1]
__rdivmod__: _UnsignedIntDivMod[_NBit1]
uint8: TypeAlias = unsignedinteger[_8Bit]
uint16: TypeAlias = unsignedinteger[_16Bit]
uint32: TypeAlias = unsignedinteger[_32Bit]
uint64: TypeAlias = unsignedinteger[_64Bit]
ubyte: TypeAlias = unsignedinteger[_NBitByte]
ushort: TypeAlias = unsignedinteger[_NBitShort]
uintc: TypeAlias = unsignedinteger[_NBitIntC]
uintp: TypeAlias = unsignedinteger[_NBitIntP]
uint: TypeAlias = uintp
ulong: TypeAlias = unsignedinteger[_NBitLong]
ulonglong: TypeAlias = unsignedinteger[_NBitLongLong]
class inexact(number[_NBit, _InexactItemT_co], Generic[_NBit, _InexactItemT_co]):
@abstractmethod
def __init__(self, value: _InexactItemT_co | None = ..., /) -> None: ...
class floating(_RealMixin, _RoundMixin, inexact[_NBit1, float]):
def __init__(self, value: _ConvertibleToFloat | None = ..., /) -> None: ...
__add__: _FloatOp[_NBit1]
__radd__: _FloatOp[_NBit1]
__sub__: _FloatOp[_NBit1]
__rsub__: _FloatOp[_NBit1]
__mul__: _FloatOp[_NBit1]
__rmul__: _FloatOp[_NBit1]
__truediv__: _FloatOp[_NBit1]
__rtruediv__: _FloatOp[_NBit1]
__floordiv__: _FloatOp[_NBit1]
__rfloordiv__: _FloatOp[_NBit1]
__pow__: _FloatOp[_NBit1]
__rpow__: _FloatOp[_NBit1]
__mod__: _FloatMod[_NBit1]
__rmod__: _FloatMod[_NBit1]
__divmod__: _FloatDivMod[_NBit1]
__rdivmod__: _FloatDivMod[_NBit1]
# NOTE: `is_integer` and `as_integer_ratio` are technically defined in the concrete subtypes
def is_integer(self, /) -> builtins.bool: ...
def as_integer_ratio(self, /) -> tuple[int, int]: ...
float16: TypeAlias = floating[_16Bit]
float32: TypeAlias = floating[_32Bit]
# either a C `double`, `float`, or `longdouble`
class float64(floating[_64Bit], float): # type: ignore[misc]
@property
def itemsize(self) -> L[8]: ...
@property
def nbytes(self) -> L[8]: ...
# overrides for `floating` and `builtins.float` compatibility (`_RealMixin` doesn't work)
@property
def real(self) -> Self: ...
@property
def imag(self) -> Self: ...
def conjugate(self) -> Self: ...
def __getformat__(self, typestr: L["double", "float"], /) -> str: ...
def __getnewargs__(self, /) -> tuple[float]: ...
# float64-specific operator overrides
@overload
def __add__(self, other: _Float64_co, /) -> float64: ...
@overload
def __add__(self, other: complexfloating[_64Bit, _64Bit], /) -> complex128: ...
@overload
def __add__(self, other: complexfloating[_NBit1, _NBit2], /) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ...
@overload
def __add__(self, other: complex, /) -> float64 | complex128: ...
@overload
def __radd__(self, other: _Float64_co, /) -> float64: ...
@overload
def __radd__(self, other: complexfloating[_64Bit, _64Bit], /) -> complex128: ...
@overload
def __radd__(self, other: complexfloating[_NBit1, _NBit2], /) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ...
@overload
def __radd__(self, other: complex, /) -> float64 | complex128: ...
@overload
def __sub__(self, other: _Float64_co, /) -> float64: ...
@overload
def __sub__(self, other: complexfloating[_64Bit, _64Bit], /) -> complex128: ...
@overload
def __sub__(self, other: complexfloating[_NBit1, _NBit2], /) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ...
@overload
def __sub__(self, other: complex, /) -> float64 | complex128: ...
@overload
def __rsub__(self, other: _Float64_co, /) -> float64: ...
@overload
def __rsub__(self, other: complexfloating[_64Bit, _64Bit], /) -> complex128: ...
@overload
def __rsub__(self, other: complexfloating[_NBit1, _NBit2], /) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ...
@overload
def __rsub__(self, other: complex, /) -> float64 | complex128: ...
@overload
def __mul__(self, other: _Float64_co, /) -> float64: ...
@overload
def __mul__(self, other: complexfloating[_64Bit, _64Bit], /) -> complex128: ...
@overload
def __mul__(self, other: complexfloating[_NBit1, _NBit2], /) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ...
@overload
def __mul__(self, other: complex, /) -> float64 | complex128: ...
@overload
def __rmul__(self, other: _Float64_co, /) -> float64: ...
@overload
def __rmul__(self, other: complexfloating[_64Bit, _64Bit], /) -> complex128: ...
@overload
def __rmul__(self, other: complexfloating[_NBit1, _NBit2], /) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ...
@overload
def __rmul__(self, other: complex, /) -> float64 | complex128: ...
@overload
def __truediv__(self, other: _Float64_co, /) -> float64: ...
@overload
def __truediv__(self, other: complexfloating[_64Bit, _64Bit], /) -> complex128: ...
@overload
def __truediv__(self, other: complexfloating[_NBit1, _NBit2], /) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ...
@overload
def __truediv__(self, other: complex, /) -> float64 | complex128: ...
@overload
def __rtruediv__(self, other: _Float64_co, /) -> float64: ...
@overload
def __rtruediv__(self, other: complexfloating[_64Bit, _64Bit], /) -> complex128: ...
@overload
def __rtruediv__(self, other: complexfloating[_NBit1, _NBit2], /) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ...
@overload
def __rtruediv__(self, other: complex, /) -> float64 | complex128: ...
@overload
def __floordiv__(self, other: _Float64_co, /) -> float64: ...
@overload
def __floordiv__(self, other: complexfloating[_64Bit, _64Bit], /) -> complex128: ...
@overload
def __floordiv__(self, other: complexfloating[_NBit1, _NBit2], /) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ...
@overload
def __floordiv__(self, other: complex, /) -> float64 | complex128: ...
@overload
def __rfloordiv__(self, other: _Float64_co, /) -> float64: ...
@overload
def __rfloordiv__(self, other: complexfloating[_64Bit, _64Bit], /) -> complex128: ...
@overload
def __rfloordiv__(self, other: complexfloating[_NBit1, _NBit2], /) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ...
@overload
def __rfloordiv__(self, other: complex, /) -> float64 | complex128: ...
@overload
def __pow__(self, other: _Float64_co, /) -> float64: ...
@overload
def __pow__(self, other: complexfloating[_64Bit, _64Bit], /) -> complex128: ...
@overload
def __pow__(self, other: complexfloating[_NBit1, _NBit2], /) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ...
@overload
def __pow__(self, other: complex, /) -> float64 | complex128: ...
@overload
def __rpow__(self, other: _Float64_co, /) -> float64: ...
@overload
def __rpow__(self, other: complexfloating[_64Bit, _64Bit], /) -> complex128: ...
@overload
def __rpow__(self, other: complexfloating[_NBit1, _NBit2], /) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ...
@overload
def __rpow__(self, other: complex, /) -> float64 | complex128: ...
def __mod__(self, other: _Float64_co, /) -> float64: ... # type: ignore[override]
def __rmod__(self, other: _Float64_co, /) -> float64: ... # type: ignore[override]
def __divmod__(self, other: _Float64_co, /) -> _2Tuple[float64]: ... # type: ignore[override]
def __rdivmod__(self, other: _Float64_co, /) -> _2Tuple[float64]: ... # type: ignore[override]
half: TypeAlias = floating[_NBitHalf]
single: TypeAlias = floating[_NBitSingle]
double: TypeAlias = floating[_NBitDouble]
longdouble: TypeAlias = floating[_NBitLongDouble]
# The main reason for `complexfloating` having two typevars is cosmetic.
# It is used to clarify why `complex128`s precision is `_64Bit`, the latter
# describing the two 64 bit floats representing its real and imaginary component
class complexfloating(inexact[_NBit1, complex], Generic[_NBit1, _NBit2]):
def __init__(self, value: _ConvertibleToComplex | None = ..., /) -> None: ...
@property
def real(self) -> floating[_NBit1]: ... # type: ignore[override]
@property
def imag(self) -> floating[_NBit2]: ... # type: ignore[override]
# NOTE: `__complex__` is technically defined in the concrete subtypes
def __complex__(self, /) -> complex: ...
def __abs__(self, /) -> floating[_NBit1 | _NBit2]: ... # type: ignore[override]
@deprecated(
"The Python built-in `round` is deprecated for complex scalars, and will raise a `TypeError` in a future release. "
"Use `np.round` or `scalar.round` instead."
)
def __round__(self, /, ndigits: SupportsIndex | None = None) -> Self: ...
@overload
def __add__(self, other: _Complex64_co, /) -> complexfloating[_NBit1, _NBit2]: ...
@overload
def __add__(self, other: complex | float64 | complex128, /) -> complexfloating[_NBit1, _NBit2] | complex128: ...
@overload
def __add__(self, other: number[_NBit], /) -> complexfloating[_NBit1, _NBit2] | complexfloating[_NBit, _NBit]: ...
@overload
def __radd__(self, other: _Complex64_co, /) -> complexfloating[_NBit1, _NBit2]: ...
@overload
def __radd__(self, other: complex, /) -> complexfloating[_NBit1, _NBit2] | complex128: ...
@overload
def __radd__(self, other: number[_NBit], /) -> complexfloating[_NBit1, _NBit2] | complexfloating[_NBit, _NBit]: ...
@overload
def __sub__(self, other: _Complex64_co, /) -> complexfloating[_NBit1, _NBit2]: ...
@overload
def __sub__(self, other: complex | float64 | complex128, /) -> complexfloating[_NBit1, _NBit2] | complex128: ...
@overload
def __sub__(self, other: number[_NBit], /) -> complexfloating[_NBit1, _NBit2] | complexfloating[_NBit, _NBit]: ...
@overload
def __rsub__(self, other: _Complex64_co, /) -> complexfloating[_NBit1, _NBit2]: ...
@overload
def __rsub__(self, other: complex, /) -> complexfloating[_NBit1, _NBit2] | complex128: ...
@overload
def __rsub__(self, other: number[_NBit], /) -> complexfloating[_NBit1, _NBit2] | complexfloating[_NBit, _NBit]: ...
@overload
def __mul__(self, other: _Complex64_co, /) -> complexfloating[_NBit1, _NBit2]: ...
@overload
def __mul__(self, other: complex | float64 | complex128, /) -> complexfloating[_NBit1, _NBit2] | complex128: ...
@overload
def __mul__(self, other: number[_NBit], /) -> complexfloating[_NBit1, _NBit2] | complexfloating[_NBit, _NBit]: ...
@overload
def __rmul__(self, other: _Complex64_co, /) -> complexfloating[_NBit1, _NBit2]: ...
@overload
def __rmul__(self, other: complex, /) -> complexfloating[_NBit1, _NBit2] | complex128: ...
@overload
def __rmul__(self, other: number[_NBit], /) -> complexfloating[_NBit1, _NBit2] | complexfloating[_NBit, _NBit]: ...
@overload
def __truediv__(self, other: _Complex64_co, /) -> complexfloating[_NBit1, _NBit2]: ...
@overload
def __truediv__(self, other: complex | float64 | complex128, /) -> complexfloating[_NBit1, _NBit2] | complex128: ...
@overload
def __truediv__(self, other: number[_NBit], /) -> complexfloating[_NBit1, _NBit2] | complexfloating[_NBit, _NBit]: ...
@overload
def __rtruediv__(self, other: _Complex64_co, /) -> complexfloating[_NBit1, _NBit2]: ...
@overload
def __rtruediv__(self, other: complex, /) -> complexfloating[_NBit1, _NBit2] | complex128: ...
@overload
def __rtruediv__(self, other: number[_NBit], /) -> complexfloating[_NBit1, _NBit2] | complexfloating[_NBit, _NBit]: ...
@overload
def __pow__(self, other: _Complex64_co, /) -> complexfloating[_NBit1, _NBit2]: ...
@overload
def __pow__(self, other: complex | float64 | complex128, /) -> complexfloating[_NBit1, _NBit2] | complex128: ...
@overload
def __pow__(self, other: number[_NBit], /) -> complexfloating[_NBit1, _NBit2] | complexfloating[_NBit, _NBit]: ...
@overload
def __rpow__(self, other: _Complex64_co, /) -> complexfloating[_NBit1, _NBit2]: ...
@overload
def __rpow__(self, other: complex, /) -> complexfloating[_NBit1, _NBit2] | complex128: ...
@overload
def __rpow__(self, other: number[_NBit], /) -> complexfloating[_NBit1, _NBit2] | complexfloating[_NBit, _NBit]: ...
complex64: TypeAlias = complexfloating[_32Bit, _32Bit]
class complex128(complexfloating[_64Bit, _64Bit], complex): # type: ignore[misc]
@property
def itemsize(self) -> L[16]: ...
@property
def nbytes(self) -> L[16]: ...
# overrides for `floating` and `builtins.float` compatibility
@property
def real(self) -> float64: ...
@property
def imag(self) -> float64: ...
def conjugate(self) -> Self: ...
def __abs__(self) -> float64: ... # type: ignore[override]
def __getnewargs__(self, /) -> tuple[float, float]: ...
# complex128-specific operator overrides
@overload
def __add__(self, other: _Complex128_co, /) -> complex128: ...
@overload
def __add__(self, other: complexfloating[_NBit1, _NBit2], /) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ...
def __radd__(self, other: _Complex128_co, /) -> complex128: ...
@overload
def __sub__(self, other: _Complex128_co, /) -> complex128: ...
@overload
def __sub__(self, other: complexfloating[_NBit1, _NBit2], /) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ...
def __rsub__(self, other: _Complex128_co, /) -> complex128: ...
@overload
def __mul__(self, other: _Complex128_co, /) -> complex128: ...
@overload
def __mul__(self, other: complexfloating[_NBit1, _NBit2], /) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ...
def __rmul__(self, other: _Complex128_co, /) -> complex128: ...
@overload
def __truediv__(self, other: _Complex128_co, /) -> complex128: ...
@overload
def __truediv__(self, other: complexfloating[_NBit1, _NBit2], /) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ...
def __rtruediv__(self, other: _Complex128_co, /) -> complex128: ...
@overload
def __pow__(self, other: _Complex128_co, /) -> complex128: ...
@overload
def __pow__(self, other: complexfloating[_NBit1, _NBit2], /) -> complexfloating[_NBit1 | _64Bit, _NBit2 | _64Bit]: ...
def __rpow__(self, other: _Complex128_co, /) -> complex128: ...
csingle: TypeAlias = complexfloating[_NBitSingle, _NBitSingle]
cdouble: TypeAlias = complexfloating[_NBitDouble, _NBitDouble]
clongdouble: TypeAlias = complexfloating[_NBitLongDouble, _NBitLongDouble]
class timedelta64(_IntegralMixin, generic[_TD64ItemT_co], Generic[_TD64ItemT_co]):
@property
def itemsize(self) -> L[8]: ...
@property
def nbytes(self) -> L[8]: ...
@overload
def __init__(self, value: _TD64ItemT_co | timedelta64[_TD64ItemT_co], /) -> None: ...
@overload
def __init__(self: timedelta64[L[0]], /) -> None: ...
@overload
def __init__(self: timedelta64[None], value: _NaTValue | None, format: _TimeUnitSpec, /) -> None: ...
@overload
def __init__(self: timedelta64[int], value: dt.timedelta, format: _TimeUnitSpec[_IntTimeUnit], /) -> None: ...
@overload
def __init__(self: timedelta64[int], value: int, format: _TimeUnitSpec[_IntTD64Unit] = ..., /) -> None: ...
@overload
def __init__(
self: timedelta64[dt.timedelta],
value: dt.timedelta | int,
format: _TimeUnitSpec[_NativeTD64Unit] = ...,
/,
) -> None: ...
@overload
def __init__(self, value: int | bytes | str | dt.timedelta | None, format: _TimeUnitSpec = ..., /) -> None: ...
# NOTE: Only a limited number of units support conversion
# to builtin scalar types: `Y`, `M`, `ns`, `ps`, `fs`, `as`
def __int__(self: timedelta64[int], /) -> int: ...
def __float__(self: timedelta64[int], /) -> float: ...
def __neg__(self, /) -> Self: ...
def __pos__(self, /) -> Self: ...
def __abs__(self, /) -> Self: ...
@overload
def __add__(self: timedelta64[None], x: _TD64Like_co, /) -> timedelta64[None]: ...
@overload
def __add__(self: timedelta64[int], x: timedelta64[int | dt.timedelta], /) -> timedelta64[int]: ...
@overload
def __add__(self: timedelta64[int], x: timedelta64, /) -> timedelta64[int | None]: ...
@overload
def __add__(self: timedelta64[dt.timedelta], x: _AnyDateOrTime, /) -> _AnyDateOrTime: ...
@overload
def __add__(self: timedelta64[_AnyTD64Item], x: timedelta64[_AnyTD64Item] | _IntLike_co, /) -> timedelta64[_AnyTD64Item]: ...
@overload
def __add__(self, x: timedelta64[None], /) -> timedelta64[None]: ...
__radd__ = __add__
@overload
def __mul__(self: timedelta64[_AnyTD64Item], x: int | np.integer[Any] | np.bool, /) -> timedelta64[_AnyTD64Item]: ...
@overload
def __mul__(self: timedelta64[_AnyTD64Item], x: float | np.floating[Any], /) -> timedelta64[_AnyTD64Item | None]: ...
@overload
def __mul__(self, x: float | np.floating[Any] | np.integer[Any] | np.bool, /) -> timedelta64: ...
__rmul__ = __mul__
@overload
def __mod__(self: timedelta64[None], x: timedelta64, /) -> timedelta64[None]: ...
@overload
def __mod__(self: timedelta64[dt.timedelta], x: dt.timedelta, /) -> dt.timedelta: ...
@overload
def __mod__(self: timedelta64[dt.timedelta], x: timedelta64[_AnyTD64Item], /) -> timedelta64[_AnyTD64Item]: ...
@overload
def __mod__(self: timedelta64[int], x: timedelta64[int | dt.timedelta], /) -> timedelta64[int]: ...
@overload
def __mod__(self, x: timedelta64[None], /) -> timedelta64[None]: ...
@overload
def __mod__(self, x: timedelta64[int], /) -> timedelta64[int]: ...
@overload
def __mod__(self, x: timedelta64, /) -> timedelta64: ...
__rmod__ = __mod__ # at runtime the outcomes differ, but the type signatures are the same
@overload
def __divmod__(self: timedelta64[None], x: timedelta64, /) -> tuple[int64, timedelta64[None]]: ...
@overload
def __divmod__(self: timedelta64[dt.timedelta], x: dt.timedelta, /) -> tuple[int, dt.timedelta]: ...
@overload
def __divmod__(self, x: timedelta64, /) -> tuple[int64, timedelta64]: ...
__rdivmod__ = __divmod__
@overload
def __sub__(self: timedelta64[None], b: _TD64Like_co, /) -> timedelta64[None]: ...
@overload
def __sub__(self: timedelta64[int], b: timedelta64[int | dt.timedelta], /) -> timedelta64[int]: ...
@overload
def __sub__(self: timedelta64[int], b: timedelta64, /) -> timedelta64[int | None]: ...
@overload
def __sub__(self: timedelta64[dt.timedelta], b: dt.timedelta, /) -> dt.timedelta: ...
@overload
def __sub__(self: timedelta64[_AnyTD64Item], b: timedelta64[_AnyTD64Item] | _IntLike_co, /) -> timedelta64[_AnyTD64Item]: ...
@overload
def __sub__(self, b: timedelta64[None], /) -> timedelta64[None]: ...
@overload
def __rsub__(self: timedelta64[None], a: _TD64Like_co, /) -> timedelta64[None]: ...
@overload
def __rsub__(self: timedelta64[dt.timedelta], a: _AnyDateOrTime, /) -> _AnyDateOrTime: ...
@overload
def __rsub__(self: timedelta64[dt.timedelta], a: timedelta64[_AnyTD64Item], /) -> timedelta64[_AnyTD64Item]: ...
@overload
def __rsub__(self: timedelta64[_AnyTD64Item], a: timedelta64[_AnyTD64Item] | _IntLike_co, /) -> timedelta64[_AnyTD64Item]: ...
@overload
def __rsub__(self, a: timedelta64[None], /) -> timedelta64[None]: ...
@overload
def __rsub__(self, a: datetime64[None], /) -> datetime64[None]: ...
@overload
def __truediv__(self: timedelta64[dt.timedelta], b: dt.timedelta, /) -> float: ...
@overload
def __truediv__(self, b: timedelta64, /) -> float64: ...
@overload
def __truediv__(self: timedelta64[_AnyTD64Item], b: int | integer, /) -> timedelta64[_AnyTD64Item]: ...
@overload
def __truediv__(self: timedelta64[_AnyTD64Item], b: float | floating, /) -> timedelta64[_AnyTD64Item | None]: ...
@overload
def __truediv__(self, b: float | floating | integer, /) -> timedelta64: ...
@overload
def __rtruediv__(self: timedelta64[dt.timedelta], a: dt.timedelta, /) -> float: ...
@overload
def __rtruediv__(self, a: timedelta64, /) -> float64: ...
@overload
def __floordiv__(self: timedelta64[dt.timedelta], b: dt.timedelta, /) -> int: ...
@overload
def __floordiv__(self, b: timedelta64, /) -> int64: ...
@overload
def __floordiv__(self: timedelta64[_AnyTD64Item], b: int | integer, /) -> timedelta64[_AnyTD64Item]: ...
@overload
def __floordiv__(self: timedelta64[_AnyTD64Item], b: float | floating, /) -> timedelta64[_AnyTD64Item | None]: ...
@overload
def __rfloordiv__(self: timedelta64[dt.timedelta], a: dt.timedelta, /) -> int: ...
@overload
def __rfloordiv__(self, a: timedelta64, /) -> int64: ...
__lt__: _ComparisonOpLT[_TD64Like_co, _ArrayLikeTD64_co]
__le__: _ComparisonOpLE[_TD64Like_co, _ArrayLikeTD64_co]
__gt__: _ComparisonOpGT[_TD64Like_co, _ArrayLikeTD64_co]
__ge__: _ComparisonOpGE[_TD64Like_co, _ArrayLikeTD64_co]
class datetime64(_RealMixin, generic[_DT64ItemT_co], Generic[_DT64ItemT_co]):
@property
def itemsize(self) -> L[8]: ...
@property
def nbytes(self) -> L[8]: ...
@overload
def __init__(self, value: datetime64[_DT64ItemT_co], /) -> None: ...
@overload
def __init__(self: datetime64[_AnyDT64Arg], value: _AnyDT64Arg, /) -> None: ...
@overload
def __init__(self: datetime64[None], value: _NaTValue | None = ..., format: _TimeUnitSpec = ..., /) -> None: ...
@overload
def __init__(self: datetime64[dt.datetime], value: _DT64Now, format: _TimeUnitSpec[_NativeTimeUnit] = ..., /) -> None: ...
@overload
def __init__(self: datetime64[dt.date], value: _DT64Date, format: _TimeUnitSpec[_DateUnit] = ..., /) -> None: ...
@overload
def __init__(self: datetime64[int], value: int | bytes | str | dt.date, format: _TimeUnitSpec[_IntTimeUnit], /) -> None: ...
@overload
def __init__(self: datetime64[dt.datetime], value: int | bytes | str, format: _TimeUnitSpec[_NativeTimeUnit], /) -> None: ...
@overload
def __init__(self: datetime64[dt.date], value: int | bytes | str, format: _TimeUnitSpec[_DateUnit], /) -> None: ...
@overload
def __init__(self, value: bytes | str | None, format: _TimeUnitSpec = ..., /) -> None: ...
@overload
def __add__(self: datetime64[_AnyDT64Item], x: int | integer[Any] | np.bool, /) -> datetime64[_AnyDT64Item]: ...
@overload
def __add__(self: datetime64[None], x: _TD64Like_co, /) -> datetime64[None]: ...
@overload
def __add__(self: datetime64[int], x: timedelta64[int | dt.timedelta], /) -> datetime64[int]: ...
@overload
def __add__(self: datetime64[dt.datetime], x: timedelta64[dt.timedelta], /) -> datetime64[dt.datetime]: ...
@overload
def __add__(self: datetime64[dt.date], x: timedelta64[dt.timedelta], /) -> datetime64[dt.date]: ...
@overload
def __add__(self: datetime64[dt.date], x: timedelta64[int], /) -> datetime64[int]: ...
@overload
def __add__(self, x: datetime64[None], /) -> datetime64[None]: ...
@overload
def __add__(self, x: _TD64Like_co, /) -> datetime64: ...
__radd__ = __add__
@overload
def __sub__(self: datetime64[_AnyDT64Item], x: int | integer[Any] | np.bool, /) -> datetime64[_AnyDT64Item]: ...
@overload
def __sub__(self: datetime64[_AnyDate], x: _AnyDate, /) -> dt.timedelta: ...
@overload
def __sub__(self: datetime64[None], x: timedelta64, /) -> datetime64[None]: ...
@overload
def __sub__(self: datetime64[None], x: datetime64, /) -> timedelta64[None]: ...
@overload
def __sub__(self: datetime64[int], x: timedelta64, /) -> datetime64[int]: ...
@overload
def __sub__(self: datetime64[int], x: datetime64, /) -> timedelta64[int]: ...
@overload
def __sub__(self: datetime64[dt.datetime], x: timedelta64[int], /) -> datetime64[int]: ...
@overload
def __sub__(self: datetime64[dt.datetime], x: timedelta64[dt.timedelta], /) -> datetime64[dt.datetime]: ...
@overload
def __sub__(self: datetime64[dt.datetime], x: datetime64[int], /) -> timedelta64[int]: ...
@overload
def __sub__(self: datetime64[dt.date], x: timedelta64[int], /) -> datetime64[dt.date | int]: ...
@overload
def __sub__(self: datetime64[dt.date], x: timedelta64[dt.timedelta], /) -> datetime64[dt.date]: ...
@overload
def __sub__(self: datetime64[dt.date], x: datetime64[dt.date], /) -> timedelta64[dt.timedelta]: ...
@overload
def __sub__(self, x: timedelta64[None], /) -> datetime64[None]: ...
@overload
def __sub__(self, x: datetime64[None], /) -> timedelta64[None]: ...
@overload
def __sub__(self, x: _TD64Like_co, /) -> datetime64: ...
@overload
def __sub__(self, x: datetime64, /) -> timedelta64: ...
@overload
def __rsub__(self: datetime64[_AnyDT64Item], x: int | integer[Any] | np.bool, /) -> datetime64[_AnyDT64Item]: ...
@overload
def __rsub__(self: datetime64[_AnyDate], x: _AnyDate, /) -> dt.timedelta: ...
@overload
def __rsub__(self: datetime64[None], x: datetime64, /) -> timedelta64[None]: ...
@overload
def __rsub__(self: datetime64[int], x: datetime64, /) -> timedelta64[int]: ...
@overload
def __rsub__(self: datetime64[dt.datetime], x: datetime64[int], /) -> timedelta64[int]: ...
@overload
def __rsub__(self: datetime64[dt.datetime], x: datetime64[dt.date], /) -> timedelta64[dt.timedelta]: ...
@overload
def __rsub__(self, x: datetime64[None], /) -> timedelta64[None]: ...
@overload
def __rsub__(self, x: datetime64, /) -> timedelta64: ...
__lt__: _ComparisonOpLT[datetime64, _ArrayLikeDT64_co]
__le__: _ComparisonOpLE[datetime64, _ArrayLikeDT64_co]
__gt__: _ComparisonOpGT[datetime64, _ArrayLikeDT64_co]
__ge__: _ComparisonOpGE[datetime64, _ArrayLikeDT64_co]
class flexible(_RealMixin, generic[_FlexibleItemT_co], Generic[_FlexibleItemT_co]): ...
class void(flexible[bytes | tuple[Any, ...]]):
@overload
def __init__(self, value: _IntLike_co | bytes, /, dtype: None = None) -> None: ...
@overload
def __init__(self, value: Any, /, dtype: _DTypeLikeVoid) -> None: ...
@overload
def __getitem__(self, key: str | SupportsIndex, /) -> Any: ...
@overload
def __getitem__(self, key: list[str], /) -> void: ...
def __setitem__(self, key: str | list[str] | SupportsIndex, value: ArrayLike, /) -> None: ...
def setfield(self, val: ArrayLike, dtype: DTypeLike, offset: int = ...) -> None: ...
class character(flexible[_CharacterItemT_co], Generic[_CharacterItemT_co]):
@abstractmethod
def __init__(self, value: _CharacterItemT_co = ..., /) -> None: ...
# NOTE: Most `np.bytes_` / `np.str_` methods return their builtin `bytes` / `str` counterpart
class bytes_(character[bytes], bytes):
@overload
def __init__(self, value: object = ..., /) -> None: ...
@overload
def __init__(self, value: str, /, encoding: str = ..., errors: str = ...) -> None: ...
def __bytes__(self, /) -> bytes: ...
class str_(character[str], str):
@overload
def __init__(self, value: object = ..., /) -> None: ...
@overload
def __init__(self, value: bytes, /, encoding: str = ..., errors: str = ...) -> None: ...
# See `numpy._typing._ufunc` for more concrete nin-/nout-specific stubs
@final
class ufunc:
@property
def __name__(self) -> LiteralString: ...
@property
def __doc__(self) -> str: ...
@property
def nin(self) -> int: ...
@property
def nout(self) -> int: ...
@property
def nargs(self) -> int: ...
@property
def ntypes(self) -> int: ...
@property
def types(self) -> list[LiteralString]: ...
# Broad return type because it has to encompass things like
#
# >>> np.logical_and.identity is True
# True
# >>> np.add.identity is 0
# True
# >>> np.sin.identity is None
# True
#
# and any user-defined ufuncs.
@property
def identity(self) -> Any: ...
# This is None for ufuncs and a string for gufuncs.
@property
def signature(self) -> None | LiteralString: ...
def __call__(self, *args: Any, **kwargs: Any) -> Any: ...
# The next four methods will always exist, but they will just
# raise a ValueError ufuncs with that don't accept two input
# arguments and return one output argument. Because of that we
# can't type them very precisely.
def reduce(self, /, *args: Any, **kwargs: Any) -> Any: ...
def accumulate(self, /, *args: Any, **kwargs: Any) -> NDArray[Any]: ...
def reduceat(self, /, *args: Any, **kwargs: Any) -> NDArray[Any]: ...
def outer(self, *args: Any, **kwargs: Any) -> Any: ...
# Similarly at won't be defined for ufuncs that return multiple
# outputs, so we can't type it very precisely.
def at(self, /, *args: Any, **kwargs: Any) -> None: ...
# Parameters: `__name__`, `ntypes` and `identity`
absolute: _UFunc_Nin1_Nout1[L['absolute'], L[20], None]
add: _UFunc_Nin2_Nout1[L['add'], L[22], L[0]]
arccos: _UFunc_Nin1_Nout1[L['arccos'], L[8], None]
arccosh: _UFunc_Nin1_Nout1[L['arccosh'], L[8], None]
arcsin: _UFunc_Nin1_Nout1[L['arcsin'], L[8], None]
arcsinh: _UFunc_Nin1_Nout1[L['arcsinh'], L[8], None]
arctan2: _UFunc_Nin2_Nout1[L['arctan2'], L[5], None]
arctan: _UFunc_Nin1_Nout1[L['arctan'], L[8], None]
arctanh: _UFunc_Nin1_Nout1[L['arctanh'], L[8], None]
bitwise_and: _UFunc_Nin2_Nout1[L['bitwise_and'], L[12], L[-1]]
bitwise_count: _UFunc_Nin1_Nout1[L['bitwise_count'], L[11], None]
bitwise_not: _UFunc_Nin1_Nout1[L['invert'], L[12], None]
bitwise_or: _UFunc_Nin2_Nout1[L['bitwise_or'], L[12], L[0]]
bitwise_xor: _UFunc_Nin2_Nout1[L['bitwise_xor'], L[12], L[0]]
cbrt: _UFunc_Nin1_Nout1[L['cbrt'], L[5], None]
ceil: _UFunc_Nin1_Nout1[L['ceil'], L[7], None]
conj: _UFunc_Nin1_Nout1[L['conjugate'], L[18], None]
conjugate: _UFunc_Nin1_Nout1[L['conjugate'], L[18], None]
copysign: _UFunc_Nin2_Nout1[L['copysign'], L[4], None]
cos: _UFunc_Nin1_Nout1[L['cos'], L[9], None]
cosh: _UFunc_Nin1_Nout1[L['cosh'], L[8], None]
deg2rad: _UFunc_Nin1_Nout1[L['deg2rad'], L[5], None]
degrees: _UFunc_Nin1_Nout1[L['degrees'], L[5], None]
divide: _UFunc_Nin2_Nout1[L['true_divide'], L[11], None]
divmod: _UFunc_Nin2_Nout2[L['divmod'], L[15], None]
equal: _UFunc_Nin2_Nout1[L['equal'], L[23], None]
exp2: _UFunc_Nin1_Nout1[L['exp2'], L[8], None]
exp: _UFunc_Nin1_Nout1[L['exp'], L[10], None]
expm1: _UFunc_Nin1_Nout1[L['expm1'], L[8], None]
fabs: _UFunc_Nin1_Nout1[L['fabs'], L[5], None]
float_power: _UFunc_Nin2_Nout1[L['float_power'], L[4], None]
floor: _UFunc_Nin1_Nout1[L['floor'], L[7], None]
floor_divide: _UFunc_Nin2_Nout1[L['floor_divide'], L[21], None]
fmax: _UFunc_Nin2_Nout1[L['fmax'], L[21], None]
fmin: _UFunc_Nin2_Nout1[L['fmin'], L[21], None]
fmod: _UFunc_Nin2_Nout1[L['fmod'], L[15], None]
frexp: _UFunc_Nin1_Nout2[L['frexp'], L[4], None]
gcd: _UFunc_Nin2_Nout1[L['gcd'], L[11], L[0]]
greater: _UFunc_Nin2_Nout1[L['greater'], L[23], None]
greater_equal: _UFunc_Nin2_Nout1[L['greater_equal'], L[23], None]
heaviside: _UFunc_Nin2_Nout1[L['heaviside'], L[4], None]
hypot: _UFunc_Nin2_Nout1[L['hypot'], L[5], L[0]]
invert: _UFunc_Nin1_Nout1[L['invert'], L[12], None]
isfinite: _UFunc_Nin1_Nout1[L['isfinite'], L[20], None]
isinf: _UFunc_Nin1_Nout1[L['isinf'], L[20], None]
isnan: _UFunc_Nin1_Nout1[L['isnan'], L[20], None]
isnat: _UFunc_Nin1_Nout1[L['isnat'], L[2], None]
lcm: _UFunc_Nin2_Nout1[L['lcm'], L[11], None]
ldexp: _UFunc_Nin2_Nout1[L['ldexp'], L[8], None]
left_shift: _UFunc_Nin2_Nout1[L['left_shift'], L[11], None]
less: _UFunc_Nin2_Nout1[L['less'], L[23], None]
less_equal: _UFunc_Nin2_Nout1[L['less_equal'], L[23], None]
log10: _UFunc_Nin1_Nout1[L['log10'], L[8], None]
log1p: _UFunc_Nin1_Nout1[L['log1p'], L[8], None]
log2: _UFunc_Nin1_Nout1[L['log2'], L[8], None]
log: _UFunc_Nin1_Nout1[L['log'], L[10], None]
logaddexp2: _UFunc_Nin2_Nout1[L['logaddexp2'], L[4], float]
logaddexp: _UFunc_Nin2_Nout1[L['logaddexp'], L[4], float]
logical_and: _UFunc_Nin2_Nout1[L['logical_and'], L[20], L[True]]
logical_not: _UFunc_Nin1_Nout1[L['logical_not'], L[20], None]
logical_or: _UFunc_Nin2_Nout1[L['logical_or'], L[20], L[False]]
logical_xor: _UFunc_Nin2_Nout1[L['logical_xor'], L[19], L[False]]
matmul: _GUFunc_Nin2_Nout1[L['matmul'], L[19], None, L["(n?,k),(k,m?)->(n?,m?)"]]
matvec: _GUFunc_Nin2_Nout1[L['matvec'], L[19], None, L["(m,n),(n)->(m)"]]
maximum: _UFunc_Nin2_Nout1[L['maximum'], L[21], None]
minimum: _UFunc_Nin2_Nout1[L['minimum'], L[21], None]
mod: _UFunc_Nin2_Nout1[L['remainder'], L[16], None]
modf: _UFunc_Nin1_Nout2[L['modf'], L[4], None]
multiply: _UFunc_Nin2_Nout1[L['multiply'], L[23], L[1]]
negative: _UFunc_Nin1_Nout1[L['negative'], L[19], None]
nextafter: _UFunc_Nin2_Nout1[L['nextafter'], L[4], None]
not_equal: _UFunc_Nin2_Nout1[L['not_equal'], L[23], None]
positive: _UFunc_Nin1_Nout1[L['positive'], L[19], None]
power: _UFunc_Nin2_Nout1[L['power'], L[18], None]
rad2deg: _UFunc_Nin1_Nout1[L['rad2deg'], L[5], None]
radians: _UFunc_Nin1_Nout1[L['radians'], L[5], None]
reciprocal: _UFunc_Nin1_Nout1[L['reciprocal'], L[18], None]
remainder: _UFunc_Nin2_Nout1[L['remainder'], L[16], None]
right_shift: _UFunc_Nin2_Nout1[L['right_shift'], L[11], None]
rint: _UFunc_Nin1_Nout1[L['rint'], L[10], None]
sign: _UFunc_Nin1_Nout1[L['sign'], L[19], None]
signbit: _UFunc_Nin1_Nout1[L['signbit'], L[4], None]
sin: _UFunc_Nin1_Nout1[L['sin'], L[9], None]
sinh: _UFunc_Nin1_Nout1[L['sinh'], L[8], None]
spacing: _UFunc_Nin1_Nout1[L['spacing'], L[4], None]
sqrt: _UFunc_Nin1_Nout1[L['sqrt'], L[10], None]
square: _UFunc_Nin1_Nout1[L['square'], L[18], None]
subtract: _UFunc_Nin2_Nout1[L['subtract'], L[21], None]
tan: _UFunc_Nin1_Nout1[L['tan'], L[8], None]
tanh: _UFunc_Nin1_Nout1[L['tanh'], L[8], None]
true_divide: _UFunc_Nin2_Nout1[L['true_divide'], L[11], None]
trunc: _UFunc_Nin1_Nout1[L['trunc'], L[7], None]
vecdot: _GUFunc_Nin2_Nout1[L['vecdot'], L[19], None, L["(n),(n)->()"]]
vecmat: _GUFunc_Nin2_Nout1[L['vecmat'], L[19], None, L["(n),(n,m)->(m)"]]
abs = absolute
acos = arccos
acosh = arccosh
asin = arcsin
asinh = arcsinh
atan = arctan
atanh = arctanh
atan2 = arctan2
concat = concatenate
bitwise_left_shift = left_shift
bitwise_invert = invert
bitwise_right_shift = right_shift
permute_dims = transpose
pow = power
class _CopyMode(enum.Enum):
ALWAYS: L[True]
IF_NEEDED: L[False]
NEVER: L[2]
class errstate:
def __init__(
self,
*,
call: _ErrCall = ...,
all: None | _ErrKind = ...,
divide: None | _ErrKind = ...,
over: None | _ErrKind = ...,
under: None | _ErrKind = ...,
invalid: None | _ErrKind = ...,
) -> None: ...
def __enter__(self) -> None: ...
def __exit__(
self,
exc_type: None | type[BaseException],
exc_value: None | BaseException,
traceback: None | TracebackType,
/,
) -> None: ...
def __call__(self, func: _CallableT) -> _CallableT: ...
class ndenumerate(Generic[_SCT_co]):
@property
def iter(self) -> flatiter[NDArray[_SCT_co]]: ...
@overload
def __new__(
cls, arr: _FiniteNestedSequence[_SupportsArray[dtype[_SCT]]],
) -> ndenumerate[_SCT]: ...
@overload
def __new__(cls, arr: str | _NestedSequence[str]) -> ndenumerate[str_]: ...
@overload
def __new__(cls, arr: bytes | _NestedSequence[bytes]) -> ndenumerate[bytes_]: ...
@overload
def __new__(cls, arr: builtins.bool | _NestedSequence[builtins.bool]) -> ndenumerate[np.bool]: ...
@overload
def __new__(cls, arr: int | _NestedSequence[int]) -> ndenumerate[int_]: ...
@overload
def __new__(cls, arr: float | _NestedSequence[float]) -> ndenumerate[float64]: ...
@overload
def __new__(cls, arr: complex | _NestedSequence[complex]) -> ndenumerate[complex128]: ...
@overload
def __new__(cls, arr: object) -> ndenumerate[object_]: ...
# The first overload is a (semi-)workaround for a mypy bug (tested with v1.10 and v1.11)
@overload
def __next__(
self: ndenumerate[np.bool | datetime64 | timedelta64 | number[Any] | flexible],
/,
) -> tuple[_Shape, _SCT_co]: ...
@overload
def __next__(self: ndenumerate[object_], /) -> tuple[_Shape, Any]: ...
@overload
def __next__(self, /) -> tuple[_Shape, _SCT_co]: ...
def __iter__(self) -> Self: ...
class ndindex:
@overload
def __init__(self, shape: tuple[SupportsIndex, ...], /) -> None: ...
@overload
def __init__(self, *shape: SupportsIndex) -> None: ...
def __iter__(self) -> Self: ...
def __next__(self) -> _Shape: ...
# TODO: The type of each `__next__` and `iters` return-type depends
# on the length and dtype of `args`; we can't describe this behavior yet
# as we lack variadics (PEP 646).
@final
class broadcast:
def __new__(cls, *args: ArrayLike) -> broadcast: ...
@property
def index(self) -> int: ...
@property
def iters(self) -> tuple[flatiter[Any], ...]: ...
@property
def nd(self) -> int: ...
@property
def ndim(self) -> int: ...
@property
def numiter(self) -> int: ...
@property
def shape(self) -> _Shape: ...
@property
def size(self) -> int: ...
def __next__(self) -> tuple[Any, ...]: ...
def __iter__(self) -> Self: ...
def reset(self) -> None: ...
@final
class busdaycalendar:
def __new__(
cls,
weekmask: ArrayLike = ...,
holidays: ArrayLike | dt.date | _NestedSequence[dt.date] = ...,
) -> busdaycalendar: ...
@property
def weekmask(self) -> NDArray[np.bool]: ...
@property
def holidays(self) -> NDArray[datetime64]: ...
class finfo(Generic[_FloatingT_co]):
dtype: Final[dtype[_FloatingT_co]]
bits: Final[int]
eps: Final[_FloatingT_co]
epsneg: Final[_FloatingT_co]
iexp: Final[int]
machep: Final[int]
max: Final[_FloatingT_co]
maxexp: Final[int]
min: Final[_FloatingT_co]
minexp: Final[int]
negep: Final[int]
nexp: Final[int]
nmant: Final[int]
precision: Final[int]
resolution: Final[_FloatingT_co]
smallest_subnormal: Final[_FloatingT_co]
@property
def smallest_normal(self) -> _FloatingT_co: ...
@property
def tiny(self) -> _FloatingT_co: ...
@overload
def __new__(
cls, dtype: inexact[_NBit1] | _DTypeLike[inexact[_NBit1]]
) -> finfo[floating[_NBit1]]: ...
@overload
def __new__(
cls, dtype: complex | float | type[complex] | type[float]
) -> finfo[float64]: ...
@overload
def __new__(
cls, dtype: str
) -> finfo[floating[Any]]: ...
class iinfo(Generic[_IntegerT_co]):
dtype: Final[dtype[_IntegerT_co]]
kind: Final[LiteralString]
bits: Final[int]
key: Final[LiteralString]
@property
def min(self) -> int: ...
@property
def max(self) -> int: ...
@overload
def __new__(
cls, dtype: _IntegerT_co | _DTypeLike[_IntegerT_co]
) -> iinfo[_IntegerT_co]: ...
@overload
def __new__(cls, dtype: int | type[int]) -> iinfo[int_]: ...
@overload
def __new__(cls, dtype: str) -> iinfo[Any]: ...
@final
class nditer:
def __new__(
cls,
op: ArrayLike | Sequence[ArrayLike],
flags: None | Sequence[_NDIterFlagsKind] = ...,
op_flags: None | Sequence[Sequence[_NDIterFlagsOp]] = ...,
op_dtypes: DTypeLike | Sequence[DTypeLike] = ...,
order: _OrderKACF = ...,
casting: _CastingKind = ...,
op_axes: None | Sequence[Sequence[SupportsIndex]] = ...,
itershape: None | _ShapeLike = ...,
buffersize: SupportsIndex = ...,
) -> nditer: ...
def __enter__(self) -> nditer: ...
def __exit__(
self,
exc_type: None | type[BaseException],
exc_value: None | BaseException,
traceback: None | TracebackType,
) -> None: ...
def __iter__(self) -> nditer: ...
def __next__(self) -> tuple[NDArray[Any], ...]: ...
def __len__(self) -> int: ...
def __copy__(self) -> nditer: ...
@overload
def __getitem__(self, index: SupportsIndex) -> NDArray[Any]: ...
@overload
def __getitem__(self, index: slice) -> tuple[NDArray[Any], ...]: ...
def __setitem__(self, index: slice | SupportsIndex, value: ArrayLike) -> None: ...
def close(self) -> None: ...
def copy(self) -> nditer: ...
def debug_print(self) -> None: ...
def enable_external_loop(self) -> None: ...
def iternext(self) -> builtins.bool: ...
def remove_axis(self, i: SupportsIndex, /) -> None: ...
def remove_multi_index(self) -> None: ...
def reset(self) -> None: ...
@property
def dtypes(self) -> tuple[dtype[Any], ...]: ...
@property
def finished(self) -> builtins.bool: ...
@property
def has_delayed_bufalloc(self) -> builtins.bool: ...
@property
def has_index(self) -> builtins.bool: ...
@property
def has_multi_index(self) -> builtins.bool: ...
@property
def index(self) -> int: ...
@property
def iterationneedsapi(self) -> builtins.bool: ...
@property
def iterindex(self) -> int: ...
@property
def iterrange(self) -> tuple[int, ...]: ...
@property
def itersize(self) -> int: ...
@property
def itviews(self) -> tuple[NDArray[Any], ...]: ...
@property
def multi_index(self) -> tuple[int, ...]: ...
@property
def ndim(self) -> int: ...
@property
def nop(self) -> int: ...
@property
def operands(self) -> tuple[NDArray[Any], ...]: ...
@property
def shape(self) -> tuple[int, ...]: ...
@property
def value(self) -> tuple[NDArray[Any], ...]: ...
class memmap(ndarray[_ShapeT_co, _DType_co]):
__array_priority__: ClassVar[float]
filename: str | None
offset: int
mode: str
@overload
def __new__(
subtype,
filename: StrOrBytesPath | _SupportsFileMethodsRW,
dtype: type[uint8] = ...,
mode: _MemMapModeKind = ...,
offset: int = ...,
shape: None | int | tuple[int, ...] = ...,
order: _OrderKACF = ...,
) -> memmap[Any, dtype[uint8]]: ...
@overload
def __new__(
subtype,
filename: StrOrBytesPath | _SupportsFileMethodsRW,
dtype: _DTypeLike[_SCT],
mode: _MemMapModeKind = ...,
offset: int = ...,
shape: None | int | tuple[int, ...] = ...,
order: _OrderKACF = ...,
) -> memmap[Any, dtype[_SCT]]: ...
@overload
def __new__(
subtype,
filename: StrOrBytesPath | _SupportsFileMethodsRW,
dtype: DTypeLike,
mode: _MemMapModeKind = ...,
offset: int = ...,
shape: None | int | tuple[int, ...] = ...,
order: _OrderKACF = ...,
) -> memmap[Any, dtype[Any]]: ...
def __array_finalize__(self, obj: object) -> None: ...
def __array_wrap__(
self,
array: memmap[_ShapeT_co, _DType_co],
context: None | tuple[ufunc, tuple[Any, ...], int] = ...,
return_scalar: builtins.bool = ...,
) -> Any: ...
def flush(self) -> None: ...
# TODO: Add a mypy plugin for managing functions whose output type is dependent
# on the literal value of some sort of signature (e.g. `einsum` and `vectorize`)
class vectorize:
pyfunc: Callable[..., Any]
cache: builtins.bool
signature: None | LiteralString
otypes: None | LiteralString
excluded: set[int | str]
__doc__: None | str
def __init__(
self,
pyfunc: Callable[..., Any],
otypes: None | str | Iterable[DTypeLike] = ...,
doc: None | str = ...,
excluded: None | Iterable[int | str] = ...,
cache: builtins.bool = ...,
signature: None | str = ...,
) -> None: ...
def __call__(self, *args: Any, **kwargs: Any) -> Any: ...
class poly1d:
@property
def variable(self) -> LiteralString: ...
@property
def order(self) -> int: ...
@property
def o(self) -> int: ...
@property
def roots(self) -> NDArray[Any]: ...
@property
def r(self) -> NDArray[Any]: ...
@property
def coeffs(self) -> NDArray[Any]: ...
@coeffs.setter
def coeffs(self, value: NDArray[Any]) -> None: ...
@property
def c(self) -> NDArray[Any]: ...
@c.setter
def c(self, value: NDArray[Any]) -> None: ...
@property
def coef(self) -> NDArray[Any]: ...
@coef.setter
def coef(self, value: NDArray[Any]) -> None: ...
@property
def coefficients(self) -> NDArray[Any]: ...
@coefficients.setter
def coefficients(self, value: NDArray[Any]) -> None: ...
__hash__: ClassVar[None] # type: ignore[assignment] # pyright: ignore[reportIncompatibleMethodOverride]
@overload
def __array__(self, /, t: None = None, copy: builtins.bool | None = None) -> ndarray[tuple[int], dtype[Any]]: ...
@overload
def __array__(self, /, t: _DType, copy: builtins.bool | None = None) -> ndarray[tuple[int], _DType]: ...
@overload
def __call__(self, val: _ScalarLike_co) -> Any: ...
@overload
def __call__(self, val: poly1d) -> poly1d: ...
@overload
def __call__(self, val: ArrayLike) -> NDArray[Any]: ...
def __init__(
self,
c_or_r: ArrayLike,
r: builtins.bool = ...,
variable: None | str = ...,
) -> None: ...
def __len__(self) -> int: ...
def __neg__(self) -> poly1d: ...
def __pos__(self) -> poly1d: ...
def __mul__(self, other: ArrayLike, /) -> poly1d: ...
def __rmul__(self, other: ArrayLike, /) -> poly1d: ...
def __add__(self, other: ArrayLike, /) -> poly1d: ...
def __radd__(self, other: ArrayLike, /) -> poly1d: ...
def __pow__(self, val: _FloatLike_co, /) -> poly1d: ... # Integral floats are accepted
def __sub__(self, other: ArrayLike, /) -> poly1d: ...
def __rsub__(self, other: ArrayLike, /) -> poly1d: ...
def __div__(self, other: ArrayLike, /) -> poly1d: ...
def __truediv__(self, other: ArrayLike, /) -> poly1d: ...
def __rdiv__(self, other: ArrayLike, /) -> poly1d: ...
def __rtruediv__(self, other: ArrayLike, /) -> poly1d: ...
def __getitem__(self, val: int, /) -> Any: ...
def __setitem__(self, key: int, val: Any, /) -> None: ...
def __iter__(self) -> Iterator[Any]: ...
def deriv(self, m: SupportsInt | SupportsIndex = ...) -> poly1d: ...
def integ(
self,
m: SupportsInt | SupportsIndex = ...,
k: None | _ArrayLikeComplex_co | _ArrayLikeObject_co = ...,
) -> poly1d: ...
class matrix(ndarray[_2DShapeT_co, _DType_co]):
__array_priority__: ClassVar[float]
def __new__(
subtype,
data: ArrayLike,
dtype: DTypeLike = ...,
copy: builtins.bool = ...,
) -> matrix[_2D, Any]: ...
def __array_finalize__(self, obj: object) -> None: ...
@overload
def __getitem__(
self,
key: (
SupportsIndex
| _ArrayLikeInt_co
| tuple[SupportsIndex | _ArrayLikeInt_co, ...]
),
/,
) -> Any: ...
@overload
def __getitem__(
self,
key: (
None
| slice
| EllipsisType
| SupportsIndex
| _ArrayLikeInt_co
| tuple[None | slice | EllipsisType | _ArrayLikeInt_co | SupportsIndex, ...]
),
/,
) -> matrix[_2D, _DType_co]: ...
@overload
def __getitem__(self: NDArray[void], key: str, /) -> matrix[_2D, dtype[Any]]: ...
@overload
def __getitem__(self: NDArray[void], key: list[str], /) -> matrix[_2DShapeT_co, dtype[void]]: ...
def __mul__(self, other: ArrayLike, /) -> matrix[_2D, Any]: ...
def __rmul__(self, other: ArrayLike, /) -> matrix[_2D, Any]: ...
def __imul__(self, other: ArrayLike, /) -> matrix[_2DShapeT_co, _DType_co]: ...
def __pow__(self, other: ArrayLike, /) -> matrix[_2D, Any]: ...
def __ipow__(self, other: ArrayLike, /) -> matrix[_2DShapeT_co, _DType_co]: ...
@overload
def sum(self, axis: None = ..., dtype: DTypeLike = ..., out: None = ...) -> Any: ...
@overload
def sum(self, axis: _ShapeLike, dtype: DTypeLike = ..., out: None = ...) -> matrix[_2D, Any]: ...
@overload
def sum(self, axis: None | _ShapeLike = ..., dtype: DTypeLike = ..., out: _ArrayT = ...) -> _ArrayT: ...
@overload
def mean(self, axis: None = ..., dtype: DTypeLike = ..., out: None = ...) -> Any: ...
@overload
def mean(self, axis: _ShapeLike, dtype: DTypeLike = ..., out: None = ...) -> matrix[_2D, Any]: ...
@overload
def mean(self, axis: None | _ShapeLike = ..., dtype: DTypeLike = ..., out: _ArrayT = ...) -> _ArrayT: ...
@overload
def std(self, axis: None = ..., dtype: DTypeLike = ..., out: None = ..., ddof: float = ...) -> Any: ...
@overload
def std(self, axis: _ShapeLike, dtype: DTypeLike = ..., out: None = ..., ddof: float = ...) -> matrix[_2D, Any]: ...
@overload
def std(self, axis: None | _ShapeLike = ..., dtype: DTypeLike = ..., out: _ArrayT = ..., ddof: float = ...) -> _ArrayT: ...
@overload
def var(self, axis: None = ..., dtype: DTypeLike = ..., out: None = ..., ddof: float = ...) -> Any: ...
@overload
def var(self, axis: _ShapeLike, dtype: DTypeLike = ..., out: None = ..., ddof: float = ...) -> matrix[_2D, Any]: ...
@overload
def var(self, axis: None | _ShapeLike = ..., dtype: DTypeLike = ..., out: _ArrayT = ..., ddof: float = ...) -> _ArrayT: ...
@overload
def prod(self, axis: None = ..., dtype: DTypeLike = ..., out: None = ...) -> Any: ...
@overload
def prod(self, axis: _ShapeLike, dtype: DTypeLike = ..., out: None = ...) -> matrix[_2D, Any]: ...
@overload
def prod(self, axis: None | _ShapeLike = ..., dtype: DTypeLike = ..., out: _ArrayT = ...) -> _ArrayT: ...
@overload
def any(self, axis: None = ..., out: None = ...) -> np.bool: ...
@overload
def any(self, axis: _ShapeLike, out: None = ...) -> matrix[_2D, dtype[np.bool]]: ...
@overload
def any(self, axis: None | _ShapeLike = ..., out: _ArrayT = ...) -> _ArrayT: ...
@overload
def all(self, axis: None = ..., out: None = ...) -> np.bool: ...
@overload
def all(self, axis: _ShapeLike, out: None = ...) -> matrix[_2D, dtype[np.bool]]: ...
@overload
def all(self, axis: None | _ShapeLike = ..., out: _ArrayT = ...) -> _ArrayT: ...
@overload
def max(self: NDArray[_SCT], axis: None = ..., out: None = ...) -> _SCT: ...
@overload
def max(self, axis: _ShapeLike, out: None = ...) -> matrix[_2D, _DType_co]: ...
@overload
def max(self, axis: None | _ShapeLike = ..., out: _ArrayT = ...) -> _ArrayT: ...
@overload
def min(self: NDArray[_SCT], axis: None = ..., out: None = ...) -> _SCT: ...
@overload
def min(self, axis: _ShapeLike, out: None = ...) -> matrix[_2D, _DType_co]: ...
@overload
def min(self, axis: None | _ShapeLike = ..., out: _ArrayT = ...) -> _ArrayT: ...
@overload
def argmax(self: NDArray[_SCT], axis: None = ..., out: None = ...) -> intp: ...
@overload
def argmax(self, axis: _ShapeLike, out: None = ...) -> matrix[_2D, dtype[intp]]: ...
@overload
def argmax(self, axis: None | _ShapeLike = ..., out: _ArrayT = ...) -> _ArrayT: ...
@overload
def argmin(self: NDArray[_SCT], axis: None = ..., out: None = ...) -> intp: ...
@overload
def argmin(self, axis: _ShapeLike, out: None = ...) -> matrix[_2D, dtype[intp]]: ...
@overload
def argmin(self, axis: None | _ShapeLike = ..., out: _ArrayT = ...) -> _ArrayT: ...
@overload
def ptp(self: NDArray[_SCT], axis: None = ..., out: None = ...) -> _SCT: ...
@overload
def ptp(self, axis: _ShapeLike, out: None = ...) -> matrix[_2D, _DType_co]: ...
@overload
def ptp(self, axis: None | _ShapeLike = ..., out: _ArrayT = ...) -> _ArrayT: ...
def squeeze(self, axis: None | _ShapeLike = ...) -> matrix[_2D, _DType_co]: ...
def tolist(self: _SupportsItem[_T]) -> list[list[_T]]: ...
def ravel(self, /, order: _OrderKACF = "C") -> matrix[tuple[L[1], int], _DType_co]: ... # pyright: ignore[reportIncompatibleMethodOverride]
def flatten(self, /, order: _OrderKACF = "C") -> matrix[tuple[L[1], int], _DType_co]: ... # pyright: ignore[reportIncompatibleMethodOverride]
@property
def T(self) -> matrix[_2D, _DType_co]: ...
@property
def I(self) -> matrix[_2D, Any]: ...
@property
def A(self) -> ndarray[_2DShapeT_co, _DType_co]: ...
@property
def A1(self) -> ndarray[_Shape, _DType_co]: ...
@property
def H(self) -> matrix[_2D, _DType_co]: ...
def getT(self) -> matrix[_2D, _DType_co]: ...
def getI(self) -> matrix[_2D, Any]: ...
def getA(self) -> ndarray[_2DShapeT_co, _DType_co]: ...
def getA1(self) -> ndarray[_Shape, _DType_co]: ...
def getH(self) -> matrix[_2D, _DType_co]: ...
def from_dlpack(
x: _SupportsDLPack[None],
/,
*,
device: L["cpu"] | None = None,
copy: builtins.bool | None = None,
) -> NDArray[number[Any] | np.bool]: ...