"""A module for creating docstrings for sphinx ``data`` domains."""
import re
import textwrap
from ._array_like import NDArray
_docstrings_list = []
def add_newdoc(name: str, value: str, doc: str) -> None:
"""Append ``_docstrings_list`` with a docstring for `name`.
Parameters
----------
name : str
The name of the object.
value : str
A string-representation of the object.
doc : str
The docstring of the object.
"""
_docstrings_list.append((name, value, doc))
def _parse_docstrings() -> str:
"""Convert all docstrings in ``_docstrings_list`` into a single
sphinx-legible text block.
"""
type_list_ret = []
for name, value, doc in _docstrings_list:
s = textwrap.dedent(doc).replace("\n", "\n ")
# Replace sections by rubrics
lines = s.split("\n")
new_lines = []
indent = ""
for line in lines:
m = re.match(r'^(\s+)[-=]+\s*$', line)
if m and new_lines:
prev = textwrap.dedent(new_lines.pop())
if prev == "Examples":
indent = ""
new_lines.append(f'{m.group(1)}.. rubric:: {prev}')
else:
indent = 4 * " "
new_lines.append(f'{m.group(1)}.. admonition:: {prev}')
new_lines.append("")
else:
new_lines.append(f"{indent}{line}")
s = "\n".join(new_lines)
s_block = f""".. data:: {name}\n :value: {value}\n {s}"""
type_list_ret.append(s_block)
return "\n".join(type_list_ret)
add_newdoc('ArrayLike', 'typing.Union[...]',
"""
A `~typing.Union` representing objects that can be coerced
into an `~numpy.ndarray`.
Among others this includes the likes of:
* Scalars.
* (Nested) sequences.
* Objects implementing the `~class.__array__` protocol.
.. versionadded:: 1.20
See Also
--------
:term:`array_like`:
Any scalar or sequence that can be interpreted as an ndarray.
Examples
--------
.. code-block:: python
>>> import numpy as np
>>> import numpy.typing as npt
>>> def as_array(a: npt.ArrayLike) -> np.ndarray:
... return np.array(a)
""")
add_newdoc('DTypeLike', 'typing.Union[...]',
"""
A `~typing.Union` representing objects that can be coerced
into a `~numpy.dtype`.
Among others this includes the likes of:
* :class:`type` objects.
* Character codes or the names of :class:`type` objects.
* Objects with the ``.dtype`` attribute.
.. versionadded:: 1.20
See Also
--------
:ref:`Specifying and constructing data types <arrays.dtypes.constructing>`
A comprehensive overview of all objects that can be coerced
into data types.
Examples
--------
.. code-block:: python
>>> import numpy as np
>>> import numpy.typing as npt
>>> def as_dtype(d: npt.DTypeLike) -> np.dtype:
... return np.dtype(d)
""")
add_newdoc('NDArray', repr(NDArray),
"""
A `np.ndarray[tuple[int, ...], np.dtype[+ScalarType]] <numpy.ndarray>`
type alias :term:`generic <generic type>` w.r.t. its
`dtype.type <numpy.dtype.type>`.
Can be used during runtime for typing arrays with a given dtype
and unspecified shape.
.. versionadded:: 1.21
Examples
--------
.. code-block:: python
>>> import numpy as np
>>> import numpy.typing as npt
>>> print(npt.NDArray)
numpy.ndarray[tuple[int, ...], numpy.dtype[+_ScalarType_co]]
>>> print(npt.NDArray[np.float64])
numpy.ndarray[tuple[int, ...], numpy.dtype[numpy.float64]]
>>> NDArrayInt = npt.NDArray[np.int_]
>>> a: NDArrayInt = np.arange(10)
>>> def func(a: npt.ArrayLike) -> npt.NDArray[Any]:
... return np.array(a)
""")
_docstrings = _parse_docstrings()