numpy/_core/fromnumeric.pyi

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512
from collections.abc import Sequence
from typing import (
    Any,
    Literal,
    NoReturn,
    Protocol,
    SupportsIndex,
    TypeAlias,
    TypeVar,
    overload,
    type_check_only,
)
from typing_extensions import Never, deprecated

import numpy as np
from numpy import (
    number,
    uint64,
    int_,
    int64,
    intp,
    float16,
    floating,
    complexfloating,
    timedelta64,
    object_,
    generic,
    _AnyShapeType,
    _OrderKACF,
    _OrderACF,
    _ModeKind,
    _PartitionKind,
    _SortKind,
    _SortSide,
    _CastingKind,
)
from numpy._typing import (
    DTypeLike,
    _DTypeLike,
    ArrayLike,
    _ArrayLike,
    NDArray,
    _NestedSequence,
    _ShapeLike,
    _ArrayLikeBool_co,
    _ArrayLikeUInt_co,
    _ArrayLikeInt_co,
    _ArrayLikeFloat_co,
    _ArrayLikeComplex_co,
    _ArrayLikeObject_co,
    _ArrayLikeTD64_co,
    _IntLike_co,
    _BoolLike_co,
    _ComplexLike_co,
    _NumberLike_co,
    _ScalarLike_co,
)

__all__ = [
    "all",
    "amax",
    "amin",
    "any",
    "argmax",
    "argmin",
    "argpartition",
    "argsort",
    "around",
    "choose",
    "clip",
    "compress",
    "cumprod",
    "cumsum",
    "cumulative_prod",
    "cumulative_sum",
    "diagonal",
    "mean",
    "max",
    "min",
    "matrix_transpose",
    "ndim",
    "nonzero",
    "partition",
    "prod",
    "ptp",
    "put",
    "ravel",
    "repeat",
    "reshape",
    "resize",
    "round",
    "searchsorted",
    "shape",
    "size",
    "sort",
    "squeeze",
    "std",
    "sum",
    "swapaxes",
    "take",
    "trace",
    "transpose",
    "var",
]

_SCT = TypeVar("_SCT", bound=generic)
_SCT_uifcO = TypeVar("_SCT_uifcO", bound=number[Any] | object_)
_ArrayType = TypeVar("_ArrayType", bound=np.ndarray[Any, Any])
_SizeType = TypeVar("_SizeType", bound=int)
_ShapeType = TypeVar("_ShapeType", bound=tuple[int, ...])
_ShapeType_co = TypeVar("_ShapeType_co", bound=tuple[int, ...], covariant=True)

@type_check_only
class _SupportsShape(Protocol[_ShapeType_co]):
    # NOTE: it matters that `self` is positional only
    @property
    def shape(self, /) -> _ShapeType_co: ...

# a "sequence" that isn't a string, bytes, bytearray, or memoryview
_T = TypeVar("_T")
_PyArray: TypeAlias = list[_T] | tuple[_T, ...]
# `int` also covers `bool`
_PyScalar: TypeAlias = int | float | complex | bytes | str

@overload
def take(
    a: _ArrayLike[_SCT],
    indices: _IntLike_co,
    axis: None = ...,
    out: None = ...,
    mode: _ModeKind = ...,
) -> _SCT: ...
@overload
def take(
    a: ArrayLike,
    indices: _IntLike_co,
    axis: None | SupportsIndex = ...,
    out: None = ...,
    mode: _ModeKind = ...,
) -> Any: ...
@overload
def take(
    a: _ArrayLike[_SCT],
    indices: _ArrayLikeInt_co,
    axis: None | SupportsIndex = ...,
    out: None = ...,
    mode: _ModeKind = ...,
) -> NDArray[_SCT]: ...
@overload
def take(
    a: ArrayLike,
    indices: _ArrayLikeInt_co,
    axis: None | SupportsIndex = ...,
    out: None = ...,
    mode: _ModeKind = ...,
) -> NDArray[Any]: ...
@overload
def take(
    a: ArrayLike,
    indices: _ArrayLikeInt_co,
    axis: None | SupportsIndex = ...,
    out: _ArrayType = ...,
    mode: _ModeKind = ...,
) -> _ArrayType: ...

@overload
def reshape(  # shape: index
    a: _ArrayLike[_SCT],
    /,
    shape: SupportsIndex,
    order: _OrderACF = "C",
    *,
    copy: bool | None = None,
) -> np.ndarray[tuple[int], np.dtype[_SCT]]: ...
@overload
def reshape(  # shape: (int, ...) @ _AnyShapeType
    a: _ArrayLike[_SCT],
    /,
    shape: _AnyShapeType,
    order: _OrderACF = "C",
    *,
    copy: bool | None = None,
) -> np.ndarray[_AnyShapeType, np.dtype[_SCT]]: ...
@overload  # shape: Sequence[index]
def reshape(
    a: _ArrayLike[_SCT],
    /,
    shape: Sequence[SupportsIndex],
    order: _OrderACF = "C",
    *,
    copy: bool | None = None,
) -> NDArray[_SCT]: ...
@overload  # shape: index
def reshape(
    a: ArrayLike,
    /,
    shape: SupportsIndex,
    order: _OrderACF = "C",
    *,
    copy: bool | None = None,
) -> np.ndarray[tuple[int], np.dtype[Any]]: ...
@overload
def reshape(  # shape: (int, ...) @ _AnyShapeType
    a: ArrayLike,
    /,
    shape: _AnyShapeType,
    order: _OrderACF = "C",
    *,
    copy: bool | None = None,
) -> np.ndarray[_AnyShapeType, np.dtype[Any]]: ...
@overload  # shape: Sequence[index]
def reshape(
    a: ArrayLike,
    /,
    shape: Sequence[SupportsIndex],
    order: _OrderACF = "C",
    *,
    copy: bool | None = None,
) -> NDArray[Any]: ...
@overload
@deprecated(
    "`newshape` keyword argument is deprecated, "
    "use `shape=...` or pass shape positionally instead. "
    "(deprecated in NumPy 2.1)",
)
def reshape(
    a: ArrayLike,
    /,
    shape: None = None,
    order: _OrderACF = "C",
    *,
    newshape: _ShapeLike,
    copy: bool | None = None,
) -> NDArray[Any]: ...

@overload
def choose(
    a: _IntLike_co,
    choices: ArrayLike,
    out: None = ...,
    mode: _ModeKind = ...,
) -> Any: ...
@overload
def choose(
    a: _ArrayLikeInt_co,
    choices: _ArrayLike[_SCT],
    out: None = ...,
    mode: _ModeKind = ...,
) -> NDArray[_SCT]: ...
@overload
def choose(
    a: _ArrayLikeInt_co,
    choices: ArrayLike,
    out: None = ...,
    mode: _ModeKind = ...,
) -> NDArray[Any]: ...
@overload
def choose(
    a: _ArrayLikeInt_co,
    choices: ArrayLike,
    out: _ArrayType = ...,
    mode: _ModeKind = ...,
) -> _ArrayType: ...

@overload
def repeat(
    a: _ArrayLike[_SCT],
    repeats: _ArrayLikeInt_co,
    axis: None | SupportsIndex = ...,
) -> NDArray[_SCT]: ...
@overload
def repeat(
    a: ArrayLike,
    repeats: _ArrayLikeInt_co,
    axis: None | SupportsIndex = ...,
) -> NDArray[Any]: ...

def put(
    a: NDArray[Any],
    ind: _ArrayLikeInt_co,
    v: ArrayLike,
    mode: _ModeKind = ...,
) -> None: ...

@overload
def swapaxes(
    a: _ArrayLike[_SCT],
    axis1: SupportsIndex,
    axis2: SupportsIndex,
) -> NDArray[_SCT]: ...
@overload
def swapaxes(
    a: ArrayLike,
    axis1: SupportsIndex,
    axis2: SupportsIndex,
) -> NDArray[Any]: ...

@overload
def transpose(
    a: _ArrayLike[_SCT],
    axes: None | _ShapeLike = ...
) -> NDArray[_SCT]: ...
@overload
def transpose(
    a: ArrayLike,
    axes: None | _ShapeLike = ...
) -> NDArray[Any]: ...

@overload
def matrix_transpose(x: _ArrayLike[_SCT]) -> NDArray[_SCT]: ...
@overload
def matrix_transpose(x: ArrayLike) -> NDArray[Any]: ...

@overload
def partition(
    a: _ArrayLike[_SCT],
    kth: _ArrayLikeInt_co,
    axis: None | SupportsIndex = ...,
    kind: _PartitionKind = ...,
    order: None | str | Sequence[str] = ...,
) -> NDArray[_SCT]: ...
@overload
def partition(
    a: ArrayLike,
    kth: _ArrayLikeInt_co,
    axis: None | SupportsIndex = ...,
    kind: _PartitionKind = ...,
    order: None | str | Sequence[str] = ...,
) -> NDArray[Any]: ...

def argpartition(
    a: ArrayLike,
    kth: _ArrayLikeInt_co,
    axis: None | SupportsIndex = ...,
    kind: _PartitionKind = ...,
    order: None | str | Sequence[str] = ...,
) -> NDArray[intp]: ...

@overload
def sort(
    a: _ArrayLike[_SCT],
    axis: None | SupportsIndex = ...,
    kind: None | _SortKind = ...,
    order: None | str | Sequence[str] = ...,
    *,
    stable: None | bool = ...,
) -> NDArray[_SCT]: ...
@overload
def sort(
    a: ArrayLike,
    axis: None | SupportsIndex = ...,
    kind: None | _SortKind = ...,
    order: None | str | Sequence[str] = ...,
    *,
    stable: None | bool = ...,
) -> NDArray[Any]: ...

def argsort(
    a: ArrayLike,
    axis: None | SupportsIndex = ...,
    kind: None | _SortKind = ...,
    order: None | str | Sequence[str] = ...,
    *,
    stable: None | bool = ...,
) -> NDArray[intp]: ...

@overload
def argmax(
    a: ArrayLike,
    axis: None = ...,
    out: None = ...,
    *,
    keepdims: Literal[False] = ...,
) -> intp: ...
@overload
def argmax(
    a: ArrayLike,
    axis: None | SupportsIndex = ...,
    out: None = ...,
    *,
    keepdims: bool = ...,
) -> Any: ...
@overload
def argmax(
    a: ArrayLike,
    axis: None | SupportsIndex = ...,
    out: _ArrayType = ...,
    *,
    keepdims: bool = ...,
) -> _ArrayType: ...

@overload
def argmin(
    a: ArrayLike,
    axis: None = ...,
    out: None = ...,
    *,
    keepdims: Literal[False] = ...,
) -> intp: ...
@overload
def argmin(
    a: ArrayLike,
    axis: None | SupportsIndex = ...,
    out: None = ...,
    *,
    keepdims: bool = ...,
) -> Any: ...
@overload
def argmin(
    a: ArrayLike,
    axis: None | SupportsIndex = ...,
    out: _ArrayType = ...,
    *,
    keepdims: bool = ...,
) -> _ArrayType: ...

@overload
def searchsorted(
    a: ArrayLike,
    v: _ScalarLike_co,
    side: _SortSide = ...,
    sorter: None | _ArrayLikeInt_co = ...,  # 1D int array
) -> intp: ...
@overload
def searchsorted(
    a: ArrayLike,
    v: ArrayLike,
    side: _SortSide = ...,
    sorter: None | _ArrayLikeInt_co = ...,  # 1D int array
) -> NDArray[intp]: ...

# unlike `reshape`, `resize` only accepts positive integers, so literal ints can be used
@overload
def resize(a: _ArrayLike[_SCT], new_shape: _SizeType) -> np.ndarray[tuple[_SizeType], np.dtype[_SCT]]: ...
@overload
def resize(a: _ArrayLike[_SCT], new_shape: SupportsIndex) -> np.ndarray[tuple[int], np.dtype[_SCT]]: ...
@overload
def resize(a: _ArrayLike[_SCT], new_shape: _ShapeType) -> np.ndarray[_ShapeType, np.dtype[_SCT]]: ...
@overload
def resize(a: _ArrayLike[_SCT], new_shape: Sequence[SupportsIndex]) -> NDArray[_SCT]: ...
@overload
def resize(a: ArrayLike, new_shape: _SizeType) -> np.ndarray[tuple[_SizeType], np.dtype[Any]]: ...
@overload
def resize(a: ArrayLike, new_shape: SupportsIndex) -> np.ndarray[tuple[int], np.dtype[Any]]: ...
@overload
def resize(a: ArrayLike, new_shape: _ShapeType) -> np.ndarray[_ShapeType, np.dtype[Any]]: ...
@overload
def resize(a: ArrayLike, new_shape: Sequence[SupportsIndex]) -> NDArray[Any]: ...

@overload
def squeeze(
    a: _SCT,
    axis: None | _ShapeLike = ...,
) -> _SCT: ...
@overload
def squeeze(
    a: _ArrayLike[_SCT],
    axis: None | _ShapeLike = ...,
) -> NDArray[_SCT]: ...
@overload
def squeeze(
    a: ArrayLike,
    axis: None | _ShapeLike = ...,
) -> NDArray[Any]: ...

@overload
def diagonal(
    a: _ArrayLike[_SCT],
    offset: SupportsIndex = ...,
    axis1: SupportsIndex = ...,
    axis2: SupportsIndex = ...,  # >= 2D array
) -> NDArray[_SCT]: ...
@overload
def diagonal(
    a: ArrayLike,
    offset: SupportsIndex = ...,
    axis1: SupportsIndex = ...,
    axis2: SupportsIndex = ...,  # >= 2D array
) -> NDArray[Any]: ...

@overload
def trace(
    a: ArrayLike,  # >= 2D array
    offset: SupportsIndex = ...,
    axis1: SupportsIndex = ...,
    axis2: SupportsIndex = ...,
    dtype: DTypeLike = ...,
    out: None = ...,
) -> Any: ...
@overload
def trace(
    a: ArrayLike,  # >= 2D array
    offset: SupportsIndex = ...,
    axis1: SupportsIndex = ...,
    axis2: SupportsIndex = ...,
    dtype: DTypeLike = ...,
    out: _ArrayType = ...,
) -> _ArrayType: ...

_Array1D: TypeAlias = np.ndarray[tuple[int], np.dtype[_SCT]]

@overload
def ravel(a: _ArrayLike[_SCT], order: _OrderKACF = "C") -> _Array1D[_SCT]: ...
@overload
def ravel(a: bytes | _NestedSequence[bytes], order: _OrderKACF = "C") -> _Array1D[np.bytes_]: ...
@overload
def ravel(a: str | _NestedSequence[str], order: _OrderKACF = "C") -> _Array1D[np.str_]: ...
@overload
def ravel(a: bool | _NestedSequence[bool], order: _OrderKACF = "C") -> _Array1D[np.bool]: ...
@overload
def ravel(a: int | _NestedSequence[int], order: _OrderKACF = "C") -> _Array1D[np.int_ | np.bool]: ...
@overload
def ravel(a: float | _NestedSequence[float], order: _OrderKACF = "C") -> _Array1D[np.float64 | np.int_ | np.bool]: ...
@overload
def ravel(
    a: complex | _NestedSequence[complex],
    order: _OrderKACF = "C",
) -> _Array1D[np.complex128 | np.float64 | np.int_ | np.bool]: ...
@overload
def ravel(a: ArrayLike, order: _OrderKACF = "C") -> np.ndarray[tuple[int], np.dtype[Any]]: ...

@overload
def nonzero(a: np.generic | np.ndarray[tuple[()], Any]) -> NoReturn: ...
@overload
def nonzero(a: _ArrayLike[Any]) -> tuple[NDArray[intp], ...]: ...

# this prevents `Any` from being returned with Pyright
@overload
def shape(a: _SupportsShape[Never]) -> tuple[int, ...]: ...
@overload
def shape(a: _SupportsShape[_ShapeType]) -> _ShapeType: ...
@overload
def shape(a: _PyScalar) -> tuple[()]: ...
# `collections.abc.Sequence` can't be used hesre, since `bytes` and `str` are
# subtypes of it, which would make the return types incompatible.
@overload
def shape(a: _PyArray[_PyScalar]) -> tuple[int]: ...
@overload
def shape(a: _PyArray[_PyArray[_PyScalar]]) -> tuple[int, int]: ...
# this overload will be skipped by typecheckers that don't support PEP 688
@overload
def shape(a: memoryview | bytearray) -> tuple[int]: ...
@overload
def shape(a: ArrayLike) -> tuple[int, ...]: ...

@overload
def compress(
    condition: _ArrayLikeBool_co,  # 1D bool array
    a: _ArrayLike[_SCT],
    axis: None | SupportsIndex = ...,
    out: None = ...,
) -> NDArray[_SCT]: ...
@overload
def compress(
    condition: _ArrayLikeBool_co,  # 1D bool array
    a: ArrayLike,
    axis: None | SupportsIndex = ...,
    out: None = ...,
) -> NDArray[Any]: ...
@overload
def compress(
    condition: _ArrayLikeBool_co,  # 1D bool array
    a: ArrayLike,
    axis: None | SupportsIndex = ...,
    out: _ArrayType = ...,
) -> _ArrayType: ...

@overload
def clip(
    a: _SCT,
    a_min: None | ArrayLike,
    a_max: None | ArrayLike,
    out: None = ...,
    *,
    min: None | ArrayLike = ...,
    max: None | ArrayLike = ...,
    dtype: None = ...,
    where: None | _ArrayLikeBool_co = ...,
    order: _OrderKACF = ...,
    subok: bool = ...,
    signature: str | tuple[None | str, ...] = ...,
    casting: _CastingKind = ...,
) -> _SCT: ...
@overload
def clip(
    a: _ScalarLike_co,
    a_min: None | ArrayLike,
    a_max: None | ArrayLike,
    out: None = ...,
    *,
    min: None | ArrayLike = ...,
    max: None | ArrayLike = ...,
    dtype: None = ...,
    where: None | _ArrayLikeBool_co = ...,
    order: _OrderKACF = ...,
    subok: bool = ...,
    signature: str | tuple[None | str, ...] = ...,
    casting: _CastingKind = ...,
) -> Any: ...
@overload
def clip(
    a: _ArrayLike[_SCT],
    a_min: None | ArrayLike,
    a_max: None | ArrayLike,
    out: None = ...,
    *,
    min: None | ArrayLike = ...,
    max: None | ArrayLike = ...,
    dtype: None = ...,
    where: None | _ArrayLikeBool_co = ...,
    order: _OrderKACF = ...,
    subok: bool = ...,
    signature: str | tuple[None | str, ...] = ...,
    casting: _CastingKind = ...,
) -> NDArray[_SCT]: ...
@overload
def clip(
    a: ArrayLike,
    a_min: None | ArrayLike,
    a_max: None | ArrayLike,
    out: None = ...,
    *,
    min: None | ArrayLike = ...,
    max: None | ArrayLike = ...,
    dtype: None = ...,
    where: None | _ArrayLikeBool_co = ...,
    order: _OrderKACF = ...,
    subok: bool = ...,
    signature: str | tuple[None | str, ...] = ...,
    casting: _CastingKind = ...,
) -> NDArray[Any]: ...
@overload
def clip(
    a: ArrayLike,
    a_min: None | ArrayLike,
    a_max: None | ArrayLike,
    out: _ArrayType = ...,
    *,
    min: None | ArrayLike = ...,
    max: None | ArrayLike = ...,
    dtype: DTypeLike,
    where: None | _ArrayLikeBool_co = ...,
    order: _OrderKACF = ...,
    subok: bool = ...,
    signature: str | tuple[None | str, ...] = ...,
    casting: _CastingKind = ...,
) -> Any: ...
@overload
def clip(
    a: ArrayLike,
    a_min: None | ArrayLike,
    a_max: None | ArrayLike,
    out: _ArrayType,
    *,
    min: None | ArrayLike = ...,
    max: None | ArrayLike = ...,
    dtype: DTypeLike = ...,
    where: None | _ArrayLikeBool_co = ...,
    order: _OrderKACF = ...,
    subok: bool = ...,
    signature: str | tuple[None | str, ...] = ...,
    casting: _CastingKind = ...,
) -> _ArrayType: ...

@overload
def sum(
    a: _ArrayLike[_SCT],
    axis: None = ...,
    dtype: None = ...,
    out: None  = ...,
    keepdims: Literal[False] = ...,
    initial: _NumberLike_co = ...,
    where: _ArrayLikeBool_co = ...,
) -> _SCT: ...
@overload
def sum(
    a: _ArrayLike[_SCT],
    axis: None = ...,
    dtype: None = ...,
    out: None  = ...,
    keepdims: bool = ...,
    initial: _NumberLike_co = ...,
    where: _ArrayLikeBool_co = ...,
) -> _SCT | NDArray[_SCT]: ...
@overload
def sum(
    a: ArrayLike,
    axis: None,
    dtype: _DTypeLike[_SCT],
    out: None = ...,
    keepdims: Literal[False] = ...,
    initial: _NumberLike_co = ...,
    where: _ArrayLikeBool_co = ...,
) -> _SCT: ...
@overload
def sum(
    a: ArrayLike,
    axis: None = ...,
    *,
    dtype: _DTypeLike[_SCT],
    out: None = ...,
    keepdims: Literal[False] = ...,
    initial: _NumberLike_co = ...,
    where: _ArrayLikeBool_co = ...,
) -> _SCT: ...
@overload
def sum(
    a: ArrayLike,
    axis: None | _ShapeLike,
    dtype: _DTypeLike[_SCT],
    out: None  = ...,
    keepdims: bool = ...,
    initial: _NumberLike_co = ...,
    where: _ArrayLikeBool_co = ...,
) -> _SCT | NDArray[_SCT]: ...
@overload
def sum(
    a: ArrayLike,
    axis: None | _ShapeLike = ...,
    *,
    dtype: _DTypeLike[_SCT],
    out: None  = ...,
    keepdims: bool = ...,
    initial: _NumberLike_co = ...,
    where: _ArrayLikeBool_co = ...,
) -> _SCT | NDArray[_SCT]: ...
@overload
def sum(
    a: ArrayLike,
    axis: None | _ShapeLike = ...,
    dtype: DTypeLike = ...,
    out: None  = ...,
    keepdims: bool = ...,
    initial: _NumberLike_co = ...,
    where: _ArrayLikeBool_co = ...,
) -> Any: ...
@overload
def sum(
    a: ArrayLike,
    axis: None | _ShapeLike = ...,
    dtype: DTypeLike = ...,
    out: _ArrayType  = ...,
    keepdims: bool = ...,
    initial: _NumberLike_co = ...,
    where: _ArrayLikeBool_co = ...,
) -> _ArrayType: ...

@overload
def all(
    a: ArrayLike,
    axis: None = None,
    out: None = None,
    keepdims: Literal[False, 0] = False,
    *,
    where: _ArrayLikeBool_co = True,
) -> np.bool: ...
@overload
def all(
    a: ArrayLike,
    axis: None | int | tuple[int, ...] = None,
    out: None = None,
    keepdims: SupportsIndex = False,
    *,
    where: _ArrayLikeBool_co = True,
) -> np.bool | NDArray[np.bool]: ...
@overload
def all(
    a: ArrayLike,
    axis: None | int | tuple[int, ...],
    out: _ArrayType,
    keepdims: SupportsIndex = False,
    *,
    where: _ArrayLikeBool_co = True,
) -> _ArrayType: ...
@overload
def all(
    a: ArrayLike,
    axis: None | int | tuple[int, ...] = None,
    *,
    out: _ArrayType,
    keepdims: SupportsIndex = False,
    where: _ArrayLikeBool_co = True,
) -> _ArrayType: ...

@overload
def any(
    a: ArrayLike,
    axis: None = None,
    out: None = None,
    keepdims: Literal[False, 0] = False,
    *,
    where: _ArrayLikeBool_co = True,
) -> np.bool: ...
@overload
def any(
    a: ArrayLike,
    axis: None | int | tuple[int, ...] = None,
    out: None = None,
    keepdims: SupportsIndex = False,
    *,
    where: _ArrayLikeBool_co = True,
) -> np.bool | NDArray[np.bool]: ...
@overload
def any(
    a: ArrayLike,
    axis: None | int | tuple[int, ...],
    out: _ArrayType,
    keepdims: SupportsIndex = False,
    *,
    where: _ArrayLikeBool_co = True,
) -> _ArrayType: ...
@overload
def any(
    a: ArrayLike,
    axis: None | int | tuple[int, ...] = None,
    *,
    out: _ArrayType,
    keepdims: SupportsIndex = False,
    where: _ArrayLikeBool_co = True,
) -> _ArrayType: ...

@overload
def cumsum(
    a: _ArrayLike[_SCT],
    axis: None | SupportsIndex = ...,
    dtype: None = ...,
    out: None = ...,
) -> NDArray[_SCT]: ...
@overload
def cumsum(
    a: ArrayLike,
    axis: None | SupportsIndex = ...,
    dtype: None = ...,
    out: None = ...,
) -> NDArray[Any]: ...
@overload
def cumsum(
    a: ArrayLike,
    axis: None | SupportsIndex = ...,
    dtype: _DTypeLike[_SCT] = ...,
    out: None = ...,
) -> NDArray[_SCT]: ...
@overload
def cumsum(
    a: ArrayLike,
    axis: None | SupportsIndex = ...,
    dtype: DTypeLike = ...,
    out: None = ...,
) -> NDArray[Any]: ...
@overload
def cumsum(
    a: ArrayLike,
    axis: None | SupportsIndex = ...,
    dtype: DTypeLike = ...,
    out: _ArrayType = ...,
) -> _ArrayType: ...

@overload
def cumulative_sum(
    x: _ArrayLike[_SCT],
    /,
    *,
    axis: None | SupportsIndex = ...,
    dtype: None = ...,
    out: None = ...,
    include_initial: bool = ...,
) -> NDArray[_SCT]: ...
@overload
def cumulative_sum(
    x: ArrayLike,
    /,
    *,
    axis: None | SupportsIndex = ...,
    dtype: None = ...,
    out: None = ...,
    include_initial: bool = ...,
) -> NDArray[Any]: ...
@overload
def cumulative_sum(
    x: ArrayLike,
    /,
    *,
    axis: None | SupportsIndex = ...,
    dtype: _DTypeLike[_SCT] = ...,
    out: None = ...,
    include_initial: bool = ...,
) -> NDArray[_SCT]: ...
@overload
def cumulative_sum(
    x: ArrayLike,
    /,
    *,
    axis: None | SupportsIndex = ...,
    dtype: DTypeLike = ...,
    out: None = ...,
    include_initial: bool = ...,
) -> NDArray[Any]: ...
@overload
def cumulative_sum(
    x: ArrayLike,
    /,
    *,
    axis: None | SupportsIndex = ...,
    dtype: DTypeLike = ...,
    out: _ArrayType = ...,
    include_initial: bool = ...,
) -> _ArrayType: ...

@overload
def ptp(
    a: _ArrayLike[_SCT],
    axis: None = ...,
    out: None = ...,
    keepdims: Literal[False] = ...,
) -> _SCT: ...
@overload
def ptp(
    a: ArrayLike,
    axis: None | _ShapeLike = ...,
    out: None = ...,
    keepdims: bool = ...,
) -> Any: ...
@overload
def ptp(
    a: ArrayLike,
    axis: None | _ShapeLike = ...,
    out: _ArrayType = ...,
    keepdims: bool = ...,
) -> _ArrayType: ...

@overload
def amax(
    a: _ArrayLike[_SCT],
    axis: None = ...,
    out: None = ...,
    keepdims: Literal[False] = ...,
    initial: _NumberLike_co = ...,
    where: _ArrayLikeBool_co = ...,
) -> _SCT: ...
@overload
def amax(
    a: ArrayLike,
    axis: None | _ShapeLike = ...,
    out: None = ...,
    keepdims: bool = ...,
    initial: _NumberLike_co = ...,
    where: _ArrayLikeBool_co = ...,
) -> Any: ...
@overload
def amax(
    a: ArrayLike,
    axis: None | _ShapeLike = ...,
    out: _ArrayType = ...,
    keepdims: bool = ...,
    initial: _NumberLike_co = ...,
    where: _ArrayLikeBool_co = ...,
) -> _ArrayType: ...

@overload
def amin(
    a: _ArrayLike[_SCT],
    axis: None = ...,
    out: None = ...,
    keepdims: Literal[False] = ...,
    initial: _NumberLike_co = ...,
    where: _ArrayLikeBool_co = ...,
) -> _SCT: ...
@overload
def amin(
    a: ArrayLike,
    axis: None | _ShapeLike = ...,
    out: None = ...,
    keepdims: bool = ...,
    initial: _NumberLike_co = ...,
    where: _ArrayLikeBool_co = ...,
) -> Any: ...
@overload
def amin(
    a: ArrayLike,
    axis: None | _ShapeLike = ...,
    out: _ArrayType = ...,
    keepdims: bool = ...,
    initial: _NumberLike_co = ...,
    where: _ArrayLikeBool_co = ...,
) -> _ArrayType: ...

# TODO: `np.prod()``: For object arrays `initial` does not necessarily
# have to be a numerical scalar.
# The only requirement is that it is compatible
# with the `.__mul__()` method(s) of the passed array's elements.

# Note that the same situation holds for all wrappers around
# `np.ufunc.reduce`, e.g. `np.sum()` (`.__add__()`).
@overload
def prod(
    a: _ArrayLikeBool_co,
    axis: None = ...,
    dtype: None = ...,
    out: None = ...,
    keepdims: Literal[False] = ...,
    initial: _NumberLike_co = ...,
    where: _ArrayLikeBool_co = ...,
) -> int_: ...
@overload
def prod(
    a: _ArrayLikeUInt_co,
    axis: None = ...,
    dtype: None = ...,
    out: None = ...,
    keepdims: Literal[False] = ...,
    initial: _NumberLike_co = ...,
    where: _ArrayLikeBool_co = ...,
) -> uint64: ...
@overload
def prod(
    a: _ArrayLikeInt_co,
    axis: None = ...,
    dtype: None = ...,
    out: None = ...,
    keepdims: Literal[False] = ...,
    initial: _NumberLike_co = ...,
    where: _ArrayLikeBool_co = ...,
) -> int64: ...
@overload
def prod(
    a: _ArrayLikeFloat_co,
    axis: None = ...,
    dtype: None = ...,
    out: None = ...,
    keepdims: Literal[False] = ...,
    initial: _NumberLike_co = ...,
    where: _ArrayLikeBool_co = ...,
) -> floating[Any]: ...
@overload
def prod(
    a: _ArrayLikeComplex_co,
    axis: None = ...,
    dtype: None = ...,
    out: None = ...,
    keepdims: Literal[False] = ...,
    initial: _NumberLike_co = ...,
    where: _ArrayLikeBool_co = ...,
) -> complexfloating[Any, Any]: ...
@overload
def prod(
    a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
    axis: None | _ShapeLike = ...,
    dtype: None = ...,
    out: None = ...,
    keepdims: bool = ...,
    initial: _NumberLike_co = ...,
    where: _ArrayLikeBool_co = ...,
) -> Any: ...
@overload
def prod(
    a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
    axis: None = ...,
    dtype: _DTypeLike[_SCT] = ...,
    out: None = ...,
    keepdims: Literal[False] = ...,
    initial: _NumberLike_co = ...,
    where: _ArrayLikeBool_co = ...,
) -> _SCT: ...
@overload
def prod(
    a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
    axis: None | _ShapeLike = ...,
    dtype: None | DTypeLike = ...,
    out: None = ...,
    keepdims: bool = ...,
    initial: _NumberLike_co = ...,
    where: _ArrayLikeBool_co = ...,
) -> Any: ...
@overload
def prod(
    a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
    axis: None | _ShapeLike = ...,
    dtype: None | DTypeLike = ...,
    out: _ArrayType = ...,
    keepdims: bool = ...,
    initial: _NumberLike_co = ...,
    where: _ArrayLikeBool_co = ...,
) -> _ArrayType: ...

@overload
def cumprod(
    a: _ArrayLikeBool_co,
    axis: None | SupportsIndex = ...,
    dtype: None = ...,
    out: None = ...,
) -> NDArray[int_]: ...
@overload
def cumprod(
    a: _ArrayLikeUInt_co,
    axis: None | SupportsIndex = ...,
    dtype: None = ...,
    out: None = ...,
) -> NDArray[uint64]: ...
@overload
def cumprod(
    a: _ArrayLikeInt_co,
    axis: None | SupportsIndex = ...,
    dtype: None = ...,
    out: None = ...,
) -> NDArray[int64]: ...
@overload
def cumprod(
    a: _ArrayLikeFloat_co,
    axis: None | SupportsIndex = ...,
    dtype: None = ...,
    out: None = ...,
) -> NDArray[floating[Any]]: ...
@overload
def cumprod(
    a: _ArrayLikeComplex_co,
    axis: None | SupportsIndex = ...,
    dtype: None = ...,
    out: None = ...,
) -> NDArray[complexfloating[Any, Any]]: ...
@overload
def cumprod(
    a: _ArrayLikeObject_co,
    axis: None | SupportsIndex = ...,
    dtype: None = ...,
    out: None = ...,
) -> NDArray[object_]: ...
@overload
def cumprod(
    a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
    axis: None | SupportsIndex = ...,
    dtype: _DTypeLike[_SCT] = ...,
    out: None = ...,
) -> NDArray[_SCT]: ...
@overload
def cumprod(
    a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
    axis: None | SupportsIndex = ...,
    dtype: DTypeLike = ...,
    out: None = ...,
) -> NDArray[Any]: ...
@overload
def cumprod(
    a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
    axis: None | SupportsIndex = ...,
    dtype: DTypeLike = ...,
    out: _ArrayType = ...,
) -> _ArrayType: ...

@overload
def cumulative_prod(
    x: _ArrayLikeBool_co,
    /,
    *,
    axis: None | SupportsIndex = ...,
    dtype: None = ...,
    out: None = ...,
    include_initial: bool = ...,
) -> NDArray[int_]: ...
@overload
def cumulative_prod(
    x: _ArrayLikeUInt_co,
    /,
    *,
    axis: None | SupportsIndex = ...,
    dtype: None = ...,
    out: None = ...,
    include_initial: bool = ...,
) -> NDArray[uint64]: ...
@overload
def cumulative_prod(
    x: _ArrayLikeInt_co,
    /,
    *,
    axis: None | SupportsIndex = ...,
    dtype: None = ...,
    out: None = ...,
    include_initial: bool = ...,
) -> NDArray[int64]: ...
@overload
def cumulative_prod(
    x: _ArrayLikeFloat_co,
    /,
    *,
    axis: None | SupportsIndex = ...,
    dtype: None = ...,
    out: None = ...,
    include_initial: bool = ...,
) -> NDArray[floating[Any]]: ...
@overload
def cumulative_prod(
    x: _ArrayLikeComplex_co,
    /,
    *,
    axis: None | SupportsIndex = ...,
    dtype: None = ...,
    out: None = ...,
    include_initial: bool = ...,
) -> NDArray[complexfloating[Any, Any]]: ...
@overload
def cumulative_prod(
    x: _ArrayLikeObject_co,
    /,
    *,
    axis: None | SupportsIndex = ...,
    dtype: None = ...,
    out: None = ...,
    include_initial: bool = ...,
) -> NDArray[object_]: ...
@overload
def cumulative_prod(
    x: _ArrayLikeComplex_co | _ArrayLikeObject_co,
    /,
    *,
    axis: None | SupportsIndex = ...,
    dtype: _DTypeLike[_SCT] = ...,
    out: None = ...,
    include_initial: bool = ...,
) -> NDArray[_SCT]: ...
@overload
def cumulative_prod(
    x: _ArrayLikeComplex_co | _ArrayLikeObject_co,
    /,
    *,
    axis: None | SupportsIndex = ...,
    dtype: DTypeLike = ...,
    out: None = ...,
    include_initial: bool = ...,
) -> NDArray[Any]: ...
@overload
def cumulative_prod(
    x: _ArrayLikeComplex_co | _ArrayLikeObject_co,
    /,
    *,
    axis: None | SupportsIndex = ...,
    dtype: DTypeLike = ...,
    out: _ArrayType = ...,
    include_initial: bool = ...,
) -> _ArrayType: ...

def ndim(a: ArrayLike) -> int: ...

def size(a: ArrayLike, axis: None | int = ...) -> int: ...

@overload
def around(
    a: _BoolLike_co,
    decimals: SupportsIndex = ...,
    out: None = ...,
) -> float16: ...
@overload
def around(
    a: _SCT_uifcO,
    decimals: SupportsIndex = ...,
    out: None = ...,
) -> _SCT_uifcO: ...
@overload
def around(
    a: _ComplexLike_co | object_,
    decimals: SupportsIndex = ...,
    out: None = ...,
) -> Any: ...
@overload
def around(
    a: _ArrayLikeBool_co,
    decimals: SupportsIndex = ...,
    out: None = ...,
) -> NDArray[float16]: ...
@overload
def around(
    a: _ArrayLike[_SCT_uifcO],
    decimals: SupportsIndex = ...,
    out: None = ...,
) -> NDArray[_SCT_uifcO]: ...
@overload
def around(
    a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
    decimals: SupportsIndex = ...,
    out: None = ...,
) -> NDArray[Any]: ...
@overload
def around(
    a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
    decimals: SupportsIndex = ...,
    out: _ArrayType = ...,
) -> _ArrayType: ...

@overload
def mean(
    a: _ArrayLikeFloat_co,
    axis: None = ...,
    dtype: None = ...,
    out: None = ...,
    keepdims: Literal[False] = ...,
    *,
    where: _ArrayLikeBool_co = ...,
) -> floating[Any]: ...
@overload
def mean(
    a: _ArrayLikeComplex_co,
    axis: None = ...,
    dtype: None = ...,
    out: None = ...,
    keepdims: Literal[False] = ...,
    *,
    where: _ArrayLikeBool_co = ...,
) -> complexfloating[Any, Any]: ...
@overload
def mean(
    a: _ArrayLikeTD64_co,
    axis: None = ...,
    dtype: None = ...,
    out: None = ...,
    keepdims: Literal[False] = ...,
    *,
    where: _ArrayLikeBool_co = ...,
) -> timedelta64: ...
@overload
def mean(
    a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
    axis: None | _ShapeLike = ...,
    dtype: None = ...,
    out: None = ...,
    keepdims: bool = ...,
    *,
    where: _ArrayLikeBool_co = ...,
) -> Any: ...
@overload
def mean(
    a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
    axis: None = ...,
    dtype: _DTypeLike[_SCT] = ...,
    out: None = ...,
    keepdims: Literal[False] = ...,
    *,
    where: _ArrayLikeBool_co = ...,
) -> _SCT: ...
@overload
def mean(
    a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
    axis: None,
    dtype: _DTypeLike[_SCT],
    out: None = ...,
    keepdims: bool = ...,
    *,
    where: _ArrayLikeBool_co = ...,
) -> _SCT | NDArray[_SCT]: ...
@overload
def mean(
    a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
    axis: None = ...,
    *,
    dtype: _DTypeLike[_SCT],
    out: None = ...,
    keepdims: bool = ...,
    where: _ArrayLikeBool_co = ...,
) -> _SCT | NDArray[_SCT]: ...
@overload
def mean(
    a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
    axis: None | _ShapeLike = ...,
    dtype: DTypeLike = ...,
    out: None = ...,
    keepdims: bool = ...,
    *,
    where: _ArrayLikeBool_co = ...,
) -> Any: ...
@overload
def mean(
    a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
    axis: None | _ShapeLike = ...,
    dtype: DTypeLike = ...,
    out: _ArrayType = ...,
    keepdims: bool = ...,
    *,
    where: _ArrayLikeBool_co = ...,
) -> _ArrayType: ...

@overload
def std(
    a: _ArrayLikeComplex_co,
    axis: None = ...,
    dtype: None = ...,
    out: None = ...,
    ddof: int | float = ...,
    keepdims: Literal[False] = ...,
    *,
    where: _ArrayLikeBool_co = ...,
    mean: _ArrayLikeComplex_co = ...,
    correction: int | float = ...,
) -> floating[Any]: ...
@overload
def std(
    a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
    axis: None | _ShapeLike = ...,
    dtype: None = ...,
    out: None = ...,
    ddof: int | float = ...,
    keepdims: bool = ...,
    *,
    where: _ArrayLikeBool_co = ...,
    mean: _ArrayLikeComplex_co | _ArrayLikeObject_co = ...,
    correction: int | float = ...,
) -> Any: ...
@overload
def std(
    a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
    axis: None = ...,
    dtype: _DTypeLike[_SCT] = ...,
    out: None = ...,
    ddof: int | float = ...,
    keepdims: Literal[False] = ...,
    *,
    where: _ArrayLikeBool_co = ...,
    mean: _ArrayLikeComplex_co | _ArrayLikeObject_co = ...,
    correction: int | float = ...,
) -> _SCT: ...
@overload
def std(
    a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
    axis: None | _ShapeLike = ...,
    dtype: DTypeLike = ...,
    out: None = ...,
    ddof: int | float = ...,
    keepdims: bool = ...,
    *,
    where: _ArrayLikeBool_co = ...,
    mean: _ArrayLikeComplex_co | _ArrayLikeObject_co = ...,
    correction: int | float = ...,
) -> Any: ...
@overload
def std(
    a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
    axis: None | _ShapeLike = ...,
    dtype: DTypeLike = ...,
    out: _ArrayType = ...,
    ddof: int | float = ...,
    keepdims: bool = ...,
    *,
    where: _ArrayLikeBool_co = ...,
    mean: _ArrayLikeComplex_co | _ArrayLikeObject_co = ...,
    correction: int | float = ...,
) -> _ArrayType: ...

@overload
def var(
    a: _ArrayLikeComplex_co,
    axis: None = ...,
    dtype: None = ...,
    out: None = ...,
    ddof: int | float = ...,
    keepdims: Literal[False] = ...,
    *,
    where: _ArrayLikeBool_co = ...,
    mean: _ArrayLikeComplex_co = ...,
    correction: int | float = ...,
) -> floating[Any]: ...
@overload
def var(
    a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
    axis: None | _ShapeLike = ...,
    dtype: None = ...,
    out: None = ...,
    ddof: int | float = ...,
    keepdims: bool = ...,
    *,
    where: _ArrayLikeBool_co = ...,
    mean: _ArrayLikeComplex_co | _ArrayLikeObject_co = ...,
    correction: int | float = ...,
) -> Any: ...
@overload
def var(
    a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
    axis: None = ...,
    dtype: _DTypeLike[_SCT] = ...,
    out: None = ...,
    ddof: int | float = ...,
    keepdims: Literal[False] = ...,
    *,
    where: _ArrayLikeBool_co = ...,
    mean: _ArrayLikeComplex_co | _ArrayLikeObject_co = ...,
    correction: int | float = ...,
) -> _SCT: ...
@overload
def var(
    a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
    axis: None | _ShapeLike = ...,
    dtype: DTypeLike = ...,
    out: None = ...,
    ddof: int | float = ...,
    keepdims: bool = ...,
    *,
    where: _ArrayLikeBool_co = ...,
    mean: _ArrayLikeComplex_co | _ArrayLikeObject_co = ...,
    correction: int | float = ...,
) -> Any: ...
@overload
def var(
    a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
    axis: None | _ShapeLike = ...,
    dtype: DTypeLike = ...,
    out: _ArrayType = ...,
    ddof: int | float = ...,
    keepdims: bool = ...,
    *,
    where: _ArrayLikeBool_co = ...,
    mean: _ArrayLikeComplex_co | _ArrayLikeObject_co = ...,
    correction: int | float = ...,
) -> _ArrayType: ...

max = amax
min = amin
round = around
Metadata
View Raw File