from numpy.testing import (assert_, assert_array_equal)
import numpy as np
import pytest
from numpy.random import Generator, MT19937
class TestRegression:
def setup_method(self):
self.mt19937 = Generator(MT19937(121263137472525314065))
def test_vonmises_range(self):
# Make sure generated random variables are in [-pi, pi].
# Regression test for ticket #986.
for mu in np.linspace(-7., 7., 5):
r = self.mt19937.vonmises(mu, 1, 50)
assert_(np.all(r > -np.pi) and np.all(r <= np.pi))
def test_hypergeometric_range(self):
# Test for ticket #921
assert_(np.all(self.mt19937.hypergeometric(3, 18, 11, size=10) < 4))
assert_(np.all(self.mt19937.hypergeometric(18, 3, 11, size=10) > 0))
# Test for ticket #5623
args = (2**20 - 2, 2**20 - 2, 2**20 - 2) # Check for 32-bit systems
assert_(self.mt19937.hypergeometric(*args) > 0)
def test_logseries_convergence(self):
# Test for ticket #923
N = 1000
rvsn = self.mt19937.logseries(0.8, size=N)
# these two frequency counts should be close to theoretical
# numbers with this large sample
# theoretical large N result is 0.49706795
freq = np.sum(rvsn == 1) / N
msg = f'Frequency was {freq:f}, should be > 0.45'
assert_(freq > 0.45, msg)
# theoretical large N result is 0.19882718
freq = np.sum(rvsn == 2) / N
msg = f'Frequency was {freq:f}, should be < 0.23'
assert_(freq < 0.23, msg)
def test_shuffle_mixed_dimension(self):
# Test for trac ticket #2074
for t in [[1, 2, 3, None],
[(1, 1), (2, 2), (3, 3), None],
[1, (2, 2), (3, 3), None],
[(1, 1), 2, 3, None]]:
mt19937 = Generator(MT19937(12345))
shuffled = np.array(t, dtype=object)
mt19937.shuffle(shuffled)
expected = np.array([t[2], t[0], t[3], t[1]], dtype=object)
assert_array_equal(np.array(shuffled, dtype=object), expected)
def test_call_within_randomstate(self):
# Check that custom BitGenerator does not call into global state
res = np.array([1, 8, 0, 1, 5, 3, 3, 8, 1, 4])
for i in range(3):
mt19937 = Generator(MT19937(i))
m = Generator(MT19937(4321))
# If m.state is not honored, the result will change
assert_array_equal(m.choice(10, size=10, p=np.ones(10)/10.), res)
def test_multivariate_normal_size_types(self):
# Test for multivariate_normal issue with 'size' argument.
# Check that the multivariate_normal size argument can be a
# numpy integer.
self.mt19937.multivariate_normal([0], [[0]], size=1)
self.mt19937.multivariate_normal([0], [[0]], size=np.int_(1))
self.mt19937.multivariate_normal([0], [[0]], size=np.int64(1))
def test_beta_small_parameters(self):
# Test that beta with small a and b parameters does not produce
# NaNs due to roundoff errors causing 0 / 0, gh-5851
x = self.mt19937.beta(0.0001, 0.0001, size=100)
assert_(not np.any(np.isnan(x)), 'Nans in mt19937.beta')
def test_beta_very_small_parameters(self):
# gh-24203: beta would hang with very small parameters.
self.mt19937.beta(1e-49, 1e-40)
def test_beta_ridiculously_small_parameters(self):
# gh-24266: beta would generate nan when the parameters
# were subnormal or a small multiple of the smallest normal.
tiny = np.finfo(1.0).tiny
x = self.mt19937.beta(tiny/32, tiny/40, size=50)
assert not np.any(np.isnan(x))
def test_beta_expected_zero_frequency(self):
# gh-24475: For small a and b (e.g. a=0.0025, b=0.0025), beta
# would generate too many zeros.
a = 0.0025
b = 0.0025
n = 1000000
x = self.mt19937.beta(a, b, size=n)
nzeros = np.count_nonzero(x == 0)
# beta CDF at x = np.finfo(np.double).smallest_subnormal/2
# is p = 0.0776169083131899, e.g,
#
# import numpy as np
# from mpmath import mp
# mp.dps = 160
# x = mp.mpf(np.finfo(np.float64).smallest_subnormal)/2
# # CDF of the beta distribution at x:
# p = mp.betainc(a, b, x1=0, x2=x, regularized=True)
# n = 1000000
# exprected_freq = float(n*p)
#
expected_freq = 77616.90831318991
assert 0.95*expected_freq < nzeros < 1.05*expected_freq
def test_choice_sum_of_probs_tolerance(self):
# The sum of probs should be 1.0 with some tolerance.
# For low precision dtypes the tolerance was too tight.
# See numpy github issue 6123.
a = [1, 2, 3]
counts = [4, 4, 2]
for dt in np.float16, np.float32, np.float64:
probs = np.array(counts, dtype=dt) / sum(counts)
c = self.mt19937.choice(a, p=probs)
assert_(c in a)
with pytest.raises(ValueError):
self.mt19937.choice(a, p=probs*0.9)
def test_shuffle_of_array_of_different_length_strings(self):
# Test that permuting an array of different length strings
# will not cause a segfault on garbage collection
# Tests gh-7710
a = np.array(['a', 'a' * 1000])
for _ in range(100):
self.mt19937.shuffle(a)
# Force Garbage Collection - should not segfault.
import gc
gc.collect()
def test_shuffle_of_array_of_objects(self):
# Test that permuting an array of objects will not cause
# a segfault on garbage collection.
# See gh-7719
a = np.array([np.arange(1), np.arange(4)], dtype=object)
for _ in range(1000):
self.mt19937.shuffle(a)
# Force Garbage Collection - should not segfault.
import gc
gc.collect()
def test_permutation_subclass(self):
class N(np.ndarray):
pass
mt19937 = Generator(MT19937(1))
orig = np.arange(3).view(N)
perm = mt19937.permutation(orig)
assert_array_equal(perm, np.array([2, 0, 1]))
assert_array_equal(orig, np.arange(3).view(N))
class M:
a = np.arange(5)
def __array__(self, dtype=None, copy=None):
return self.a
mt19937 = Generator(MT19937(1))
m = M()
perm = mt19937.permutation(m)
assert_array_equal(perm, np.array([4, 1, 3, 0, 2]))
assert_array_equal(m.__array__(), np.arange(5))
def test_gamma_0(self):
assert self.mt19937.standard_gamma(0.0) == 0.0
assert_array_equal(self.mt19937.standard_gamma([0.0]), 0.0)
actual = self.mt19937.standard_gamma([0.0], dtype='float')
expected = np.array([0.], dtype=np.float32)
assert_array_equal(actual, expected)
def test_geometric_tiny_prob(self):
# Regression test for gh-17007.
# When p = 1e-30, the probability that a sample will exceed 2**63-1
# is 0.9999999999907766, so we expect the result to be all 2**63-1.
assert_array_equal(self.mt19937.geometric(p=1e-30, size=3),
np.iinfo(np.int64).max)
def test_zipf_large_parameter(self):
# Regression test for part of gh-9829: a call such as rng.zipf(10000)
# would hang.
n = 8
sample = self.mt19937.zipf(10000, size=n)
assert_array_equal(sample, np.ones(n, dtype=np.int64))
def test_zipf_a_near_1(self):
# Regression test for gh-9829: a call such as rng.zipf(1.0000000000001)
# would hang.
n = 100000
sample = self.mt19937.zipf(1.0000000000001, size=n)
# Not much of a test, but let's do something more than verify that
# it doesn't hang. Certainly for a monotonically decreasing
# discrete distribution truncated to signed 64 bit integers, more
# than half should be less than 2**62.
assert np.count_nonzero(sample < 2**62) > n/2