#define FORTRANOBJECT_C
#include "fortranobject.h"
#ifdef __cplusplus
extern "C" {
#endif
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
/*
This file implements: FortranObject, array_from_pyobj, copy_ND_array
Author: Pearu Peterson <[email protected]>
$Revision: 1.52 $
$Date: 2005/07/11 07:44:20 $
*/
int
F2PyDict_SetItemString(PyObject *dict, char *name, PyObject *obj)
{
if (obj == NULL) {
fprintf(stderr, "Error loading %s\n", name);
if (PyErr_Occurred()) {
PyErr_Print();
PyErr_Clear();
}
return -1;
}
return PyDict_SetItemString(dict, name, obj);
}
/*
* Python-only fallback for thread-local callback pointers
*/
void *
F2PySwapThreadLocalCallbackPtr(char *key, void *ptr)
{
PyObject *local_dict, *value;
void *prev;
local_dict = PyThreadState_GetDict();
if (local_dict == NULL) {
Py_FatalError(
"F2PySwapThreadLocalCallbackPtr: PyThreadState_GetDict "
"failed");
}
value = PyDict_GetItemString(local_dict, key);
if (value != NULL) {
prev = PyLong_AsVoidPtr(value);
if (PyErr_Occurred()) {
Py_FatalError(
"F2PySwapThreadLocalCallbackPtr: PyLong_AsVoidPtr failed");
}
}
else {
prev = NULL;
}
value = PyLong_FromVoidPtr((void *)ptr);
if (value == NULL) {
Py_FatalError(
"F2PySwapThreadLocalCallbackPtr: PyLong_FromVoidPtr failed");
}
if (PyDict_SetItemString(local_dict, key, value) != 0) {
Py_FatalError(
"F2PySwapThreadLocalCallbackPtr: PyDict_SetItemString failed");
}
Py_DECREF(value);
return prev;
}
void *
F2PyGetThreadLocalCallbackPtr(char *key)
{
PyObject *local_dict, *value;
void *prev;
local_dict = PyThreadState_GetDict();
if (local_dict == NULL) {
Py_FatalError(
"F2PyGetThreadLocalCallbackPtr: PyThreadState_GetDict failed");
}
value = PyDict_GetItemString(local_dict, key);
if (value != NULL) {
prev = PyLong_AsVoidPtr(value);
if (PyErr_Occurred()) {
Py_FatalError(
"F2PyGetThreadLocalCallbackPtr: PyLong_AsVoidPtr failed");
}
}
else {
prev = NULL;
}
return prev;
}
static PyArray_Descr *
get_descr_from_type_and_elsize(const int type_num, const int elsize) {
PyArray_Descr * descr = PyArray_DescrFromType(type_num);
if (type_num == NPY_STRING) {
// PyArray_DescrFromType returns descr with elsize = 0.
PyArray_DESCR_REPLACE(descr);
if (descr == NULL) {
return NULL;
}
PyDataType_SET_ELSIZE(descr, elsize);
}
return descr;
}
/************************* FortranObject *******************************/
typedef PyObject *(*fortranfunc)(PyObject *, PyObject *, PyObject *, void *);
PyObject *
PyFortranObject_New(FortranDataDef *defs, f2py_void_func init)
{
int i;
PyFortranObject *fp = NULL;
PyObject *v = NULL;
if (init != NULL) { /* Initialize F90 module objects */
(*(init))();
}
fp = PyObject_New(PyFortranObject, &PyFortran_Type);
if (fp == NULL) {
return NULL;
}
if ((fp->dict = PyDict_New()) == NULL) {
Py_DECREF(fp);
return NULL;
}
fp->len = 0;
while (defs[fp->len].name != NULL) {
fp->len++;
}
if (fp->len == 0) {
goto fail;
}
fp->defs = defs;
for (i = 0; i < fp->len; i++) {
if (fp->defs[i].rank == -1) { /* Is Fortran routine */
v = PyFortranObject_NewAsAttr(&(fp->defs[i]));
if (v == NULL) {
goto fail;
}
PyDict_SetItemString(fp->dict, fp->defs[i].name, v);
Py_XDECREF(v);
}
else if ((fp->defs[i].data) !=
NULL) { /* Is Fortran variable or array (not allocatable) */
PyArray_Descr *
descr = get_descr_from_type_and_elsize(fp->defs[i].type,
fp->defs[i].elsize);
if (descr == NULL) {
goto fail;
}
v = PyArray_NewFromDescr(&PyArray_Type, descr, fp->defs[i].rank,
fp->defs[i].dims.d, NULL, fp->defs[i].data,
NPY_ARRAY_FARRAY, NULL);
if (v == NULL) {
Py_DECREF(descr);
goto fail;
}
PyDict_SetItemString(fp->dict, fp->defs[i].name, v);
Py_XDECREF(v);
}
}
return (PyObject *)fp;
fail:
Py_XDECREF(fp);
return NULL;
}
PyObject *
PyFortranObject_NewAsAttr(FortranDataDef *defs)
{ /* used for calling F90 module routines */
PyFortranObject *fp = NULL;
fp = PyObject_New(PyFortranObject, &PyFortran_Type);
if (fp == NULL)
return NULL;
if ((fp->dict = PyDict_New()) == NULL) {
PyObject_Del(fp);
return NULL;
}
fp->len = 1;
fp->defs = defs;
if (defs->rank == -1) {
PyDict_SetItemString(fp->dict, "__name__", PyUnicode_FromFormat("function %s", defs->name));
} else if (defs->rank == 0) {
PyDict_SetItemString(fp->dict, "__name__", PyUnicode_FromFormat("scalar %s", defs->name));
} else {
PyDict_SetItemString(fp->dict, "__name__", PyUnicode_FromFormat("array %s", defs->name));
}
return (PyObject *)fp;
}
/* Fortran methods */
static void
fortran_dealloc(PyFortranObject *fp)
{
Py_XDECREF(fp->dict);
PyObject_Del(fp);
}
/* Returns number of bytes consumed from buf, or -1 on error. */
static Py_ssize_t
format_def(char *buf, Py_ssize_t size, FortranDataDef def)
{
char *p = buf;
int i;
npy_intp n;
n = PyOS_snprintf(p, size, "array(%" NPY_INTP_FMT, def.dims.d[0]);
if (n < 0 || n >= size) {
return -1;
}
p += n;
size -= n;
for (i = 1; i < def.rank; i++) {
n = PyOS_snprintf(p, size, ",%" NPY_INTP_FMT, def.dims.d[i]);
if (n < 0 || n >= size) {
return -1;
}
p += n;
size -= n;
}
if (size <= 0) {
return -1;
}
*p++ = ')';
size--;
if (def.data == NULL) {
static const char notalloc[] = ", not allocated";
if ((size_t)size < sizeof(notalloc)) {
return -1;
}
memcpy(p, notalloc, sizeof(notalloc));
p += sizeof(notalloc);
size -= sizeof(notalloc);
}
return p - buf;
}
static PyObject *
fortran_doc(FortranDataDef def)
{
char *buf, *p;
PyObject *s = NULL;
Py_ssize_t n, origsize, size = 100;
if (def.doc != NULL) {
size += strlen(def.doc);
}
origsize = size;
buf = p = (char *)PyMem_Malloc(size);
if (buf == NULL) {
return PyErr_NoMemory();
}
if (def.rank == -1) {
if (def.doc) {
n = strlen(def.doc);
if (n > size) {
goto fail;
}
memcpy(p, def.doc, n);
p += n;
size -= n;
}
else {
n = PyOS_snprintf(p, size, "%s - no docs available", def.name);
if (n < 0 || n >= size) {
goto fail;
}
p += n;
size -= n;
}
}
else {
PyArray_Descr *d = PyArray_DescrFromType(def.type);
n = PyOS_snprintf(p, size, "%s : '%c'-", def.name, d->type);
Py_DECREF(d);
if (n < 0 || n >= size) {
goto fail;
}
p += n;
size -= n;
if (def.data == NULL) {
n = format_def(p, size, def);
if (n < 0) {
goto fail;
}
p += n;
size -= n;
}
else if (def.rank > 0) {
n = format_def(p, size, def);
if (n < 0) {
goto fail;
}
p += n;
size -= n;
}
else {
n = strlen("scalar");
if (size < n) {
goto fail;
}
memcpy(p, "scalar", n);
p += n;
size -= n;
}
}
if (size <= 1) {
goto fail;
}
*p++ = '\n';
size--;
/* p now points one beyond the last character of the string in buf */
s = PyUnicode_FromStringAndSize(buf, p - buf);
PyMem_Free(buf);
return s;
fail:
fprintf(stderr,
"fortranobject.c: fortran_doc: len(p)=%zd>%zd=size:"
" too long docstring required, increase size\n",
p - buf, origsize);
PyMem_Free(buf);
return NULL;
}
static FortranDataDef *save_def; /* save pointer of an allocatable array */
static void
set_data(char *d, npy_intp *f)
{ /* callback from Fortran */
if (*f) /* In fortran f=allocated(d) */
save_def->data = d;
else
save_def->data = NULL;
/* printf("set_data: d=%p,f=%d\n",d,*f); */
}
static PyObject *
fortran_getattr(PyFortranObject *fp, char *name)
{
int i, j, k, flag;
if (fp->dict != NULL) {
PyObject *v = _PyDict_GetItemStringWithError(fp->dict, name);
if (v == NULL && PyErr_Occurred()) {
return NULL;
}
else if (v != NULL) {
Py_INCREF(v);
return v;
}
}
for (i = 0, j = 1; i < fp->len && (j = strcmp(name, fp->defs[i].name));
i++)
;
if (j == 0)
if (fp->defs[i].rank != -1) { /* F90 allocatable array */
if (fp->defs[i].func == NULL)
return NULL;
for (k = 0; k < fp->defs[i].rank; ++k) fp->defs[i].dims.d[k] = -1;
save_def = &fp->defs[i];
(*(fp->defs[i].func))(&fp->defs[i].rank, fp->defs[i].dims.d,
set_data, &flag);
if (flag == 2)
k = fp->defs[i].rank + 1;
else
k = fp->defs[i].rank;
if (fp->defs[i].data != NULL) { /* array is allocated */
PyObject *v = PyArray_New(
&PyArray_Type, k, fp->defs[i].dims.d, fp->defs[i].type,
NULL, fp->defs[i].data, 0, NPY_ARRAY_FARRAY, NULL);
if (v == NULL)
return NULL;
/* Py_INCREF(v); */
return v;
}
else { /* array is not allocated */
Py_RETURN_NONE;
}
}
if (strcmp(name, "__dict__") == 0) {
Py_INCREF(fp->dict);
return fp->dict;
}
if (strcmp(name, "__doc__") == 0) {
PyObject *s = PyUnicode_FromString(""), *s2, *s3;
for (i = 0; i < fp->len; i++) {
s2 = fortran_doc(fp->defs[i]);
s3 = PyUnicode_Concat(s, s2);
Py_DECREF(s2);
Py_DECREF(s);
s = s3;
}
if (PyDict_SetItemString(fp->dict, name, s))
return NULL;
return s;
}
if ((strcmp(name, "_cpointer") == 0) && (fp->len == 1)) {
PyObject *cobj =
F2PyCapsule_FromVoidPtr((void *)(fp->defs[0].data), NULL);
if (PyDict_SetItemString(fp->dict, name, cobj))
return NULL;
return cobj;
}
PyObject *str, *ret;
str = PyUnicode_FromString(name);
ret = PyObject_GenericGetAttr((PyObject *)fp, str);
Py_DECREF(str);
return ret;
}
static int
fortran_setattr(PyFortranObject *fp, char *name, PyObject *v)
{
int i, j, flag;
PyArrayObject *arr = NULL;
for (i = 0, j = 1; i < fp->len && (j = strcmp(name, fp->defs[i].name));
i++)
;
if (j == 0) {
if (fp->defs[i].rank == -1) {
PyErr_SetString(PyExc_AttributeError,
"over-writing fortran routine");
return -1;
}
if (fp->defs[i].func != NULL) { /* is allocatable array */
npy_intp dims[F2PY_MAX_DIMS];
int k;
save_def = &fp->defs[i];
if (v != Py_None) { /* set new value (reallocate if needed --
see f2py generated code for more
details ) */
for (k = 0; k < fp->defs[i].rank; k++) dims[k] = -1;
if ((arr = array_from_pyobj(fp->defs[i].type, dims,
fp->defs[i].rank, F2PY_INTENT_IN,
v)) == NULL)
return -1;
(*(fp->defs[i].func))(&fp->defs[i].rank, PyArray_DIMS(arr),
set_data, &flag);
}
else { /* deallocate */
for (k = 0; k < fp->defs[i].rank; k++) dims[k] = 0;
(*(fp->defs[i].func))(&fp->defs[i].rank, dims, set_data,
&flag);
for (k = 0; k < fp->defs[i].rank; k++) dims[k] = -1;
}
memcpy(fp->defs[i].dims.d, dims,
fp->defs[i].rank * sizeof(npy_intp));
}
else { /* not allocatable array */
if ((arr = array_from_pyobj(fp->defs[i].type, fp->defs[i].dims.d,
fp->defs[i].rank, F2PY_INTENT_IN,
v)) == NULL)
return -1;
}
if (fp->defs[i].data !=
NULL) { /* copy Python object to Fortran array */
npy_intp s = PyArray_MultiplyList(fp->defs[i].dims.d,
PyArray_NDIM(arr));
if (s == -1)
s = PyArray_MultiplyList(PyArray_DIMS(arr), PyArray_NDIM(arr));
if (s < 0 || (memcpy(fp->defs[i].data, PyArray_DATA(arr),
s * PyArray_ITEMSIZE(arr))) == NULL) {
if ((PyObject *)arr != v) {
Py_DECREF(arr);
}
return -1;
}
if ((PyObject *)arr != v) {
Py_DECREF(arr);
}
}
else
return (fp->defs[i].func == NULL ? -1 : 0);
return 0; /* successful */
}
if (fp->dict == NULL) {
fp->dict = PyDict_New();
if (fp->dict == NULL)
return -1;
}
if (v == NULL) {
int rv = PyDict_DelItemString(fp->dict, name);
if (rv < 0)
PyErr_SetString(PyExc_AttributeError,
"delete non-existing fortran attribute");
return rv;
}
else
return PyDict_SetItemString(fp->dict, name, v);
}
static PyObject *
fortran_call(PyFortranObject *fp, PyObject *arg, PyObject *kw)
{
int i = 0;
/* printf("fortran call
name=%s,func=%p,data=%p,%p\n",fp->defs[i].name,
fp->defs[i].func,fp->defs[i].data,&fp->defs[i].data); */
if (fp->defs[i].rank == -1) { /* is Fortran routine */
if (fp->defs[i].func == NULL) {
PyErr_Format(PyExc_RuntimeError, "no function to call");
return NULL;
}
else if (fp->defs[i].data == NULL)
/* dummy routine */
return (*((fortranfunc)(fp->defs[i].func)))((PyObject *)fp, arg,
kw, NULL);
else
return (*((fortranfunc)(fp->defs[i].func)))(
(PyObject *)fp, arg, kw, (void *)fp->defs[i].data);
}
PyErr_Format(PyExc_TypeError, "this fortran object is not callable");
return NULL;
}
static PyObject *
fortran_repr(PyFortranObject *fp)
{
PyObject *name = NULL, *repr = NULL;
name = PyObject_GetAttrString((PyObject *)fp, "__name__");
PyErr_Clear();
if (name != NULL && PyUnicode_Check(name)) {
repr = PyUnicode_FromFormat("<fortran %U>", name);
}
else {
repr = PyUnicode_FromString("<fortran object>");
}
Py_XDECREF(name);
return repr;
}
PyTypeObject PyFortran_Type = {
PyVarObject_HEAD_INIT(NULL, 0).tp_name = "fortran",
.tp_basicsize = sizeof(PyFortranObject),
.tp_dealloc = (destructor)fortran_dealloc,
.tp_getattr = (getattrfunc)fortran_getattr,
.tp_setattr = (setattrfunc)fortran_setattr,
.tp_repr = (reprfunc)fortran_repr,
.tp_call = (ternaryfunc)fortran_call,
};
/************************* f2py_report_atexit *******************************/
#ifdef F2PY_REPORT_ATEXIT
static int passed_time = 0;
static int passed_counter = 0;
static int passed_call_time = 0;
static struct timeb start_time;
static struct timeb stop_time;
static struct timeb start_call_time;
static struct timeb stop_call_time;
static int cb_passed_time = 0;
static int cb_passed_counter = 0;
static int cb_passed_call_time = 0;
static struct timeb cb_start_time;
static struct timeb cb_stop_time;
static struct timeb cb_start_call_time;
static struct timeb cb_stop_call_time;
extern void
f2py_start_clock(void)
{
ftime(&start_time);
}
extern void
f2py_start_call_clock(void)
{
f2py_stop_clock();
ftime(&start_call_time);
}
extern void
f2py_stop_clock(void)
{
ftime(&stop_time);
passed_time += 1000 * (stop_time.time - start_time.time);
passed_time += stop_time.millitm - start_time.millitm;
}
extern void
f2py_stop_call_clock(void)
{
ftime(&stop_call_time);
passed_call_time += 1000 * (stop_call_time.time - start_call_time.time);
passed_call_time += stop_call_time.millitm - start_call_time.millitm;
passed_counter += 1;
f2py_start_clock();
}
extern void
f2py_cb_start_clock(void)
{
ftime(&cb_start_time);
}
extern void
f2py_cb_start_call_clock(void)
{
f2py_cb_stop_clock();
ftime(&cb_start_call_time);
}
extern void
f2py_cb_stop_clock(void)
{
ftime(&cb_stop_time);
cb_passed_time += 1000 * (cb_stop_time.time - cb_start_time.time);
cb_passed_time += cb_stop_time.millitm - cb_start_time.millitm;
}
extern void
f2py_cb_stop_call_clock(void)
{
ftime(&cb_stop_call_time);
cb_passed_call_time +=
1000 * (cb_stop_call_time.time - cb_start_call_time.time);
cb_passed_call_time +=
cb_stop_call_time.millitm - cb_start_call_time.millitm;
cb_passed_counter += 1;
f2py_cb_start_clock();
}
static int f2py_report_on_exit_been_here = 0;
extern void
f2py_report_on_exit(int exit_flag, void *name)
{
if (f2py_report_on_exit_been_here) {
fprintf(stderr, " %s\n", (char *)name);
return;
}
f2py_report_on_exit_been_here = 1;
fprintf(stderr, " /-----------------------\\\n");
fprintf(stderr, " < F2PY performance report >\n");
fprintf(stderr, " \\-----------------------/\n");
fprintf(stderr, "Overall time spent in ...\n");
fprintf(stderr, "(a) wrapped (Fortran/C) functions : %8d msec\n",
passed_call_time);
fprintf(stderr, "(b) f2py interface, %6d calls : %8d msec\n",
passed_counter, passed_time);
fprintf(stderr, "(c) call-back (Python) functions : %8d msec\n",
cb_passed_call_time);
fprintf(stderr, "(d) f2py call-back interface, %6d calls : %8d msec\n",
cb_passed_counter, cb_passed_time);
fprintf(stderr,
"(e) wrapped (Fortran/C) functions (actual) : %8d msec\n\n",
passed_call_time - cb_passed_call_time - cb_passed_time);
fprintf(stderr,
"Use -DF2PY_REPORT_ATEXIT_DISABLE to disable this message.\n");
fprintf(stderr, "Exit status: %d\n", exit_flag);
fprintf(stderr, "Modules : %s\n", (char *)name);
}
#endif
/********************** report on array copy ****************************/
#ifdef F2PY_REPORT_ON_ARRAY_COPY
static void
f2py_report_on_array_copy(PyArrayObject *arr)
{
const npy_intp arr_size = PyArray_Size((PyObject *)arr);
if (arr_size > F2PY_REPORT_ON_ARRAY_COPY) {
fprintf(stderr,
"copied an array: size=%ld, elsize=%" NPY_INTP_FMT "\n",
arr_size, (npy_intp)PyArray_ITEMSIZE(arr));
}
}
static void
f2py_report_on_array_copy_fromany(void)
{
fprintf(stderr, "created an array from object\n");
}
#define F2PY_REPORT_ON_ARRAY_COPY_FROMARR \
f2py_report_on_array_copy((PyArrayObject *)arr)
#define F2PY_REPORT_ON_ARRAY_COPY_FROMANY f2py_report_on_array_copy_fromany()
#else
#define F2PY_REPORT_ON_ARRAY_COPY_FROMARR
#define F2PY_REPORT_ON_ARRAY_COPY_FROMANY
#endif
/************************* array_from_obj *******************************/
/*
* File: array_from_pyobj.c
*
* Description:
* ------------
* Provides array_from_pyobj function that returns a contiguous array
* object with the given dimensions and required storage order, either
* in row-major (C) or column-major (Fortran) order. The function
* array_from_pyobj is very flexible about its Python object argument
* that can be any number, list, tuple, or array.
*
* array_from_pyobj is used in f2py generated Python extension
* modules.
*
* Author: Pearu Peterson <[email protected]>
* Created: 13-16 January 2002
* $Id: fortranobject.c,v 1.52 2005/07/11 07:44:20 pearu Exp $
*/
static int check_and_fix_dimensions(const PyArrayObject* arr,
const int rank,
npy_intp *dims,
const char *errmess);
static int
find_first_negative_dimension(const int rank, const npy_intp *dims)
{
int i;
for (i = 0; i < rank; ++i) {
if (dims[i] < 0) {
return i;
}
}
return -1;
}
#ifdef DEBUG_COPY_ND_ARRAY
void
dump_dims(int rank, npy_intp const *dims)
{
int i;
printf("[");
for (i = 0; i < rank; ++i) {
printf("%3" NPY_INTP_FMT, dims[i]);
}
printf("]\n");
}
void
dump_attrs(const PyArrayObject *obj)
{
const PyArrayObject_fields *arr = (const PyArrayObject_fields *)obj;
int rank = PyArray_NDIM(arr);
npy_intp size = PyArray_Size((PyObject *)arr);
printf("\trank = %d, flags = %d, size = %" NPY_INTP_FMT "\n", rank,
arr->flags, size);
printf("\tstrides = ");
dump_dims(rank, arr->strides);
printf("\tdimensions = ");
dump_dims(rank, arr->dimensions);
}
#endif
#define SWAPTYPE(a, b, t) \
{ \
t c; \
c = (a); \
(a) = (b); \
(b) = c; \
}
static int
swap_arrays(PyArrayObject *obj1, PyArrayObject *obj2)
{
PyArrayObject_fields *arr1 = (PyArrayObject_fields *)obj1,
*arr2 = (PyArrayObject_fields *)obj2;
SWAPTYPE(arr1->data, arr2->data, char *);
SWAPTYPE(arr1->nd, arr2->nd, int);
SWAPTYPE(arr1->dimensions, arr2->dimensions, npy_intp *);
SWAPTYPE(arr1->strides, arr2->strides, npy_intp *);
SWAPTYPE(arr1->base, arr2->base, PyObject *);
SWAPTYPE(arr1->descr, arr2->descr, PyArray_Descr *);
SWAPTYPE(arr1->flags, arr2->flags, int);
/* SWAPTYPE(arr1->weakreflist,arr2->weakreflist,PyObject*); */
return 0;
}
#define ARRAY_ISCOMPATIBLE(arr,type_num) \
((PyArray_ISINTEGER(arr) && PyTypeNum_ISINTEGER(type_num)) || \
(PyArray_ISFLOAT(arr) && PyTypeNum_ISFLOAT(type_num)) || \
(PyArray_ISCOMPLEX(arr) && PyTypeNum_ISCOMPLEX(type_num)) || \
(PyArray_ISBOOL(arr) && PyTypeNum_ISBOOL(type_num)) || \
(PyArray_ISSTRING(arr) && PyTypeNum_ISSTRING(type_num)))
static int
get_elsize(PyObject *obj) {
/*
get_elsize determines array itemsize from a Python object. Returns
elsize if successful, -1 otherwise.
Supported types of the input are: numpy.ndarray, bytes, str, tuple,
list.
*/
if (PyArray_Check(obj)) {
return PyArray_ITEMSIZE((PyArrayObject *)obj);
} else if (PyBytes_Check(obj)) {
return PyBytes_GET_SIZE(obj);
} else if (PyUnicode_Check(obj)) {
return PyUnicode_GET_LENGTH(obj);
} else if (PySequence_Check(obj)) {
PyObject* fast = PySequence_Fast(obj, "f2py:fortranobject.c:get_elsize");
if (fast != NULL) {
Py_ssize_t i, n = PySequence_Fast_GET_SIZE(fast);
int sz, elsize = 0;
for (i=0; i<n; i++) {
sz = get_elsize(PySequence_Fast_GET_ITEM(fast, i) /* borrowed */);
if (sz > elsize) {
elsize = sz;
}
}
Py_DECREF(fast);
return elsize;
}
}
return -1;
}
extern PyArrayObject *
ndarray_from_pyobj(const int type_num,
const int elsize_,
npy_intp *dims,
const int rank,
const int intent,
PyObject *obj,
const char *errmess) {
/*
* Return an array with given element type and shape from a Python
* object while taking into account the usage intent of the array.
*
* - element type is defined by type_num and elsize
* - shape is defined by dims and rank
*
* ndarray_from_pyobj is used to convert Python object arguments
* to numpy ndarrays with given type and shape that data is passed
* to interfaced Fortran or C functions.
*
* errmess (if not NULL), contains a prefix of an error message
* for an exception to be triggered within this function.
*
* Negative elsize value means that elsize is to be determined
* from the Python object in runtime.
*
* Note on strings
* ---------------
*
* String type (type_num == NPY_STRING) does not have fixed
* element size and, by default, the type object sets it to
* 0. Therefore, for string types, one has to use elsize
* argument. For other types, elsize value is ignored.
*
* NumPy defines the type of a fixed-width string as
* dtype('S<width>'). In addition, there is also dtype('c'), that
* appears as dtype('S1') (these have the same type_num value),
* but is actually different (.char attribute is either 'S' or
* 'c', respecitely).
*
* In Fortran, character arrays and strings are different
* concepts. The relation between Fortran types, NumPy dtypes,
* and type_num-elsize pairs, is defined as follows:
*
* character*5 foo | dtype('S5') | elsize=5, shape=()
* character(5) foo | dtype('S1') | elsize=1, shape=(5)
* character*5 foo(n) | dtype('S5') | elsize=5, shape=(n,)
* character(5) foo(n) | dtype('S1') | elsize=1, shape=(5, n)
* character*(*) foo | dtype('S') | elsize=-1, shape=()
*
* Note about reference counting
* -----------------------------
*
* If the caller returns the array to Python, it must be done with
* Py_BuildValue("N",arr). Otherwise, if obj!=arr then the caller
* must call Py_DECREF(arr).
*
* Note on intent(cache,out,..)
* ----------------------------
* Don't expect correct data when returning intent(cache) array.
*
*/
char mess[F2PY_MESSAGE_BUFFER_SIZE];
PyArrayObject *arr = NULL;
int elsize = (elsize_ < 0 ? get_elsize(obj) : elsize_);
if (elsize < 0) {
if (errmess != NULL) {
strcpy(mess, errmess);
}
sprintf(mess + strlen(mess),
" -- failed to determine element size from %s",
Py_TYPE(obj)->tp_name);
PyErr_SetString(PyExc_SystemError, mess);
return NULL;
}
PyArray_Descr * descr = get_descr_from_type_and_elsize(type_num, elsize); // new reference
if (descr == NULL) {
return NULL;
}
elsize = PyDataType_ELSIZE(descr);
if ((intent & F2PY_INTENT_HIDE)
|| ((intent & F2PY_INTENT_CACHE) && (obj == Py_None))
|| ((intent & F2PY_OPTIONAL) && (obj == Py_None))
) {
/* intent(cache), optional, intent(hide) */
int ineg = find_first_negative_dimension(rank, dims);
if (ineg >= 0) {
int i;
strcpy(mess, "failed to create intent(cache|hide)|optional array"
"-- must have defined dimensions but got (");
for(i = 0; i < rank; ++i)
sprintf(mess + strlen(mess), "%" NPY_INTP_FMT ",", dims[i]);
strcat(mess, ")");
PyErr_SetString(PyExc_ValueError, mess);
Py_DECREF(descr);
return NULL;
}
arr = (PyArrayObject *) \
PyArray_NewFromDescr(&PyArray_Type, descr, rank, dims,
NULL, NULL, !(intent & F2PY_INTENT_C), NULL);
if (arr == NULL) {
Py_DECREF(descr);
return NULL;
}
if (PyArray_ITEMSIZE(arr) != elsize) {
strcpy(mess, "failed to create intent(cache|hide)|optional array");
sprintf(mess+strlen(mess)," -- expected elsize=%d got %" NPY_INTP_FMT, elsize, (npy_intp)PyArray_ITEMSIZE(arr));
PyErr_SetString(PyExc_ValueError,mess);
Py_DECREF(arr);
return NULL;
}
if (!(intent & F2PY_INTENT_CACHE)) {
PyArray_FILLWBYTE(arr, 0);
}
return arr;
}
if (PyArray_Check(obj)) {
arr = (PyArrayObject *)obj;
if (intent & F2PY_INTENT_CACHE) {
/* intent(cache) */
if (PyArray_ISONESEGMENT(arr)
&& PyArray_ITEMSIZE(arr) >= elsize) {
if (check_and_fix_dimensions(arr, rank, dims, errmess)) {
Py_DECREF(descr);
return NULL;
}
if (intent & F2PY_INTENT_OUT)
Py_INCREF(arr);
Py_DECREF(descr);
return arr;
}
strcpy(mess, "failed to initialize intent(cache) array");
if (!PyArray_ISONESEGMENT(arr))
strcat(mess, " -- input must be in one segment");
if (PyArray_ITEMSIZE(arr) < elsize)
sprintf(mess + strlen(mess),
" -- expected at least elsize=%d but got "
"%" NPY_INTP_FMT,
elsize, (npy_intp)PyArray_ITEMSIZE(arr));
PyErr_SetString(PyExc_ValueError, mess);
Py_DECREF(descr);
return NULL;
}
/* here we have always intent(in) or intent(inout) or intent(inplace)
*/
if (check_and_fix_dimensions(arr, rank, dims, errmess)) {
Py_DECREF(descr);
return NULL;
}
/*
printf("intent alignment=%d\n", F2PY_GET_ALIGNMENT(intent));
printf("alignment check=%d\n", F2PY_CHECK_ALIGNMENT(arr, intent));
int i;
for (i=1;i<=16;i++)
printf("i=%d isaligned=%d\n", i, ARRAY_ISALIGNED(arr, i));
*/
if ((! (intent & F2PY_INTENT_COPY)) &&
PyArray_ITEMSIZE(arr) == elsize &&
ARRAY_ISCOMPATIBLE(arr,type_num) &&
F2PY_CHECK_ALIGNMENT(arr, intent)) {
if ((intent & F2PY_INTENT_INOUT || intent & F2PY_INTENT_INPLACE)
? ((intent & F2PY_INTENT_C) ? PyArray_ISCARRAY(arr) : PyArray_ISFARRAY(arr))
: ((intent & F2PY_INTENT_C) ? PyArray_ISCARRAY_RO(arr) : PyArray_ISFARRAY_RO(arr))) {
if ((intent & F2PY_INTENT_OUT)) {
Py_INCREF(arr);
}
/* Returning input array */
Py_DECREF(descr);
return arr;
}
}
if (intent & F2PY_INTENT_INOUT) {
strcpy(mess, "failed to initialize intent(inout) array");
/* Must use PyArray_IS*ARRAY because intent(inout) requires
* writable input */
if ((intent & F2PY_INTENT_C) && !PyArray_ISCARRAY(arr))
strcat(mess, " -- input not contiguous");
if (!(intent & F2PY_INTENT_C) && !PyArray_ISFARRAY(arr))
strcat(mess, " -- input not fortran contiguous");
if (PyArray_ITEMSIZE(arr) != elsize)
sprintf(mess + strlen(mess),
" -- expected elsize=%d but got %" NPY_INTP_FMT,
elsize,
(npy_intp)PyArray_ITEMSIZE(arr)
);
if (!(ARRAY_ISCOMPATIBLE(arr, type_num))) {
sprintf(mess + strlen(mess),
" -- input '%c' not compatible to '%c'",
PyArray_DESCR(arr)->type, descr->type);
}
if (!(F2PY_CHECK_ALIGNMENT(arr, intent)))
sprintf(mess + strlen(mess), " -- input not %d-aligned",
F2PY_GET_ALIGNMENT(intent));
PyErr_SetString(PyExc_ValueError, mess);
Py_DECREF(descr);
return NULL;
}
/* here we have always intent(in) or intent(inplace) */
{
PyArrayObject * retarr = (PyArrayObject *) \
PyArray_NewFromDescr(&PyArray_Type, descr, PyArray_NDIM(arr), PyArray_DIMS(arr),
NULL, NULL, !(intent & F2PY_INTENT_C), NULL);
if (retarr==NULL) {
Py_DECREF(descr);
return NULL;
}
F2PY_REPORT_ON_ARRAY_COPY_FROMARR;
if (PyArray_CopyInto(retarr, arr)) {
Py_DECREF(retarr);
return NULL;
}
if (intent & F2PY_INTENT_INPLACE) {
if (swap_arrays(arr,retarr)) {
Py_DECREF(retarr);
return NULL; /* XXX: set exception */
}
Py_XDECREF(retarr);
if (intent & F2PY_INTENT_OUT)
Py_INCREF(arr);
} else {
arr = retarr;
}
}
return arr;
}
if ((intent & F2PY_INTENT_INOUT) || (intent & F2PY_INTENT_INPLACE) ||
(intent & F2PY_INTENT_CACHE)) {
PyErr_Format(PyExc_TypeError,
"failed to initialize intent(inout|inplace|cache) "
"array, input '%s' object is not an array",
Py_TYPE(obj)->tp_name);
Py_DECREF(descr);
return NULL;
}
{
F2PY_REPORT_ON_ARRAY_COPY_FROMANY;
arr = (PyArrayObject *)PyArray_FromAny(
obj, descr, 0, 0,
((intent & F2PY_INTENT_C) ? NPY_ARRAY_CARRAY
: NPY_ARRAY_FARRAY) |
NPY_ARRAY_FORCECAST,
NULL);
// Warning: in the case of NPY_STRING, PyArray_FromAny may
// reset descr->elsize, e.g. dtype('S0') becomes dtype('S1').
if (arr == NULL) {
Py_DECREF(descr);
return NULL;
}
if (type_num != NPY_STRING && PyArray_ITEMSIZE(arr) != elsize) {
// This is internal sanity tests: elsize has been set to
// descr->elsize in the beginning of this function.
strcpy(mess, "failed to initialize intent(in) array");
sprintf(mess + strlen(mess),
" -- expected elsize=%d got %" NPY_INTP_FMT, elsize,
(npy_intp)PyArray_ITEMSIZE(arr));
PyErr_SetString(PyExc_ValueError, mess);
Py_DECREF(arr);
return NULL;
}
if (check_and_fix_dimensions(arr, rank, dims, errmess)) {
Py_DECREF(arr);
return NULL;
}
return arr;
}
}
extern PyArrayObject *
array_from_pyobj(const int type_num,
npy_intp *dims,
const int rank,
const int intent,
PyObject *obj) {
/*
Same as ndarray_from_pyobj but with elsize determined from type,
if possible. Provided for backward compatibility.
*/
PyArray_Descr* descr = PyArray_DescrFromType(type_num);
int elsize = PyDataType_ELSIZE(descr);
Py_DECREF(descr);
return ndarray_from_pyobj(type_num, elsize, dims, rank, intent, obj, NULL);
}
/*****************************************/
/* Helper functions for array_from_pyobj */
/*****************************************/
static int
check_and_fix_dimensions(const PyArrayObject* arr, const int rank,
npy_intp *dims, const char *errmess)
{
/*
* This function fills in blanks (that are -1's) in dims list using
* the dimensions from arr. It also checks that non-blank dims will
* match with the corresponding values in arr dimensions.
*
* Returns 0 if the function is successful.
*
* If an error condition is detected, an exception is set and 1 is
* returned.
*/
char mess[F2PY_MESSAGE_BUFFER_SIZE];
const npy_intp arr_size =
(PyArray_NDIM(arr)) ? PyArray_Size((PyObject *)arr) : 1;
#ifdef DEBUG_COPY_ND_ARRAY
dump_attrs(arr);
printf("check_and_fix_dimensions:init: dims=");
dump_dims(rank, dims);
#endif
if (rank > PyArray_NDIM(arr)) { /* [1,2] -> [[1],[2]]; 1 -> [[1]] */
npy_intp new_size = 1;
int free_axe = -1;
int i;
npy_intp d;
/* Fill dims where -1 or 0; check dimensions; calc new_size; */
for (i = 0; i < PyArray_NDIM(arr); ++i) {
d = PyArray_DIM(arr, i);
if (dims[i] >= 0) {
if (d > 1 && dims[i] != d) {
PyErr_Format(
PyExc_ValueError,
"%d-th dimension must be fixed to %" NPY_INTP_FMT
" but got %" NPY_INTP_FMT "\n",
i, dims[i], d);
return 1;
}
if (!dims[i])
dims[i] = 1;
}
else {
dims[i] = d ? d : 1;
}
new_size *= dims[i];
}
for (i = PyArray_NDIM(arr); i < rank; ++i)
if (dims[i] > 1) {
PyErr_Format(PyExc_ValueError,
"%d-th dimension must be %" NPY_INTP_FMT
" but got 0 (not defined).\n",
i, dims[i]);
return 1;
}
else if (free_axe < 0)
free_axe = i;
else
dims[i] = 1;
if (free_axe >= 0) {
dims[free_axe] = arr_size / new_size;
new_size *= dims[free_axe];
}
if (new_size != arr_size) {
PyErr_Format(PyExc_ValueError,
"unexpected array size: new_size=%" NPY_INTP_FMT
", got array with arr_size=%" NPY_INTP_FMT
" (maybe too many free indices)\n",
new_size, arr_size);
return 1;
}
}
else if (rank == PyArray_NDIM(arr)) {
npy_intp new_size = 1;
int i;
npy_intp d;
for (i = 0; i < rank; ++i) {
d = PyArray_DIM(arr, i);
if (dims[i] >= 0) {
if (d > 1 && d != dims[i]) {
if (errmess != NULL) {
strcpy(mess, errmess);
}
sprintf(mess + strlen(mess),
" -- %d-th dimension must be fixed to %"
NPY_INTP_FMT " but got %" NPY_INTP_FMT,
i, dims[i], d);
PyErr_SetString(PyExc_ValueError, mess);
return 1;
}
if (!dims[i])
dims[i] = 1;
}
else
dims[i] = d;
new_size *= dims[i];
}
if (new_size != arr_size) {
PyErr_Format(PyExc_ValueError,
"unexpected array size: new_size=%" NPY_INTP_FMT
", got array with arr_size=%" NPY_INTP_FMT "\n",
new_size, arr_size);
return 1;
}
}
else { /* [[1,2]] -> [[1],[2]] */
int i, j;
npy_intp d;
int effrank;
npy_intp size;
for (i = 0, effrank = 0; i < PyArray_NDIM(arr); ++i)
if (PyArray_DIM(arr, i) > 1)
++effrank;
if (dims[rank - 1] >= 0)
if (effrank > rank) {
PyErr_Format(PyExc_ValueError,
"too many axes: %d (effrank=%d), "
"expected rank=%d\n",
PyArray_NDIM(arr), effrank, rank);
return 1;
}
for (i = 0, j = 0; i < rank; ++i) {
while (j < PyArray_NDIM(arr) && PyArray_DIM(arr, j) < 2) ++j;
if (j >= PyArray_NDIM(arr))
d = 1;
else
d = PyArray_DIM(arr, j++);
if (dims[i] >= 0) {
if (d > 1 && d != dims[i]) {
if (errmess != NULL) {
strcpy(mess, errmess);
}
sprintf(mess + strlen(mess),
" -- %d-th dimension must be fixed to %"
NPY_INTP_FMT " but got %" NPY_INTP_FMT
" (real index=%d)\n",
i, dims[i], d, j-1);
PyErr_SetString(PyExc_ValueError, mess);
return 1;
}
if (!dims[i])
dims[i] = 1;
}
else
dims[i] = d;
}
for (i = rank; i < PyArray_NDIM(arr);
++i) { /* [[1,2],[3,4]] -> [1,2,3,4] */
while (j < PyArray_NDIM(arr) && PyArray_DIM(arr, j) < 2) ++j;
if (j >= PyArray_NDIM(arr))
d = 1;
else
d = PyArray_DIM(arr, j++);
dims[rank - 1] *= d;
}
for (i = 0, size = 1; i < rank; ++i) size *= dims[i];
if (size != arr_size) {
char msg[200];
int len;
snprintf(msg, sizeof(msg),
"unexpected array size: size=%" NPY_INTP_FMT
", arr_size=%" NPY_INTP_FMT
", rank=%d, effrank=%d, arr.nd=%d, dims=[",
size, arr_size, rank, effrank, PyArray_NDIM(arr));
for (i = 0; i < rank; ++i) {
len = strlen(msg);
snprintf(msg + len, sizeof(msg) - len, " %" NPY_INTP_FMT,
dims[i]);
}
len = strlen(msg);
snprintf(msg + len, sizeof(msg) - len, " ], arr.dims=[");
for (i = 0; i < PyArray_NDIM(arr); ++i) {
len = strlen(msg);
snprintf(msg + len, sizeof(msg) - len, " %" NPY_INTP_FMT,
PyArray_DIM(arr, i));
}
len = strlen(msg);
snprintf(msg + len, sizeof(msg) - len, " ]\n");
PyErr_SetString(PyExc_ValueError, msg);
return 1;
}
}
#ifdef DEBUG_COPY_ND_ARRAY
printf("check_and_fix_dimensions:end: dims=");
dump_dims(rank, dims);
#endif
return 0;
}
/* End of file: array_from_pyobj.c */
/************************* copy_ND_array *******************************/
extern int
copy_ND_array(const PyArrayObject *arr, PyArrayObject *out)
{
F2PY_REPORT_ON_ARRAY_COPY_FROMARR;
return PyArray_CopyInto(out, (PyArrayObject *)arr);
}
/********************* Various utility functions ***********************/
extern int
f2py_describe(PyObject *obj, char *buf) {
/*
Write the description of a Python object to buf. The caller must
provide buffer with size sufficient to write the description.
Return 1 on success.
*/
char localbuf[F2PY_MESSAGE_BUFFER_SIZE];
if (PyBytes_Check(obj)) {
sprintf(localbuf, "%d-%s", (npy_int)PyBytes_GET_SIZE(obj), Py_TYPE(obj)->tp_name);
} else if (PyUnicode_Check(obj)) {
sprintf(localbuf, "%d-%s", (npy_int)PyUnicode_GET_LENGTH(obj), Py_TYPE(obj)->tp_name);
} else if (PyArray_CheckScalar(obj)) {
PyArrayObject* arr = (PyArrayObject*)obj;
sprintf(localbuf, "%c%" NPY_INTP_FMT "-%s-scalar", PyArray_DESCR(arr)->kind, PyArray_ITEMSIZE(arr), Py_TYPE(obj)->tp_name);
} else if (PyArray_Check(obj)) {
int i;
PyArrayObject* arr = (PyArrayObject*)obj;
strcpy(localbuf, "(");
for (i=0; i<PyArray_NDIM(arr); i++) {
if (i) {
strcat(localbuf, " ");
}
sprintf(localbuf + strlen(localbuf), "%" NPY_INTP_FMT ",", PyArray_DIM(arr, i));
}
sprintf(localbuf + strlen(localbuf), ")-%c%" NPY_INTP_FMT "-%s", PyArray_DESCR(arr)->kind, PyArray_ITEMSIZE(arr), Py_TYPE(obj)->tp_name);
} else if (PySequence_Check(obj)) {
sprintf(localbuf, "%d-%s", (npy_int)PySequence_Length(obj), Py_TYPE(obj)->tp_name);
} else {
sprintf(localbuf, "%s instance", Py_TYPE(obj)->tp_name);
}
// TODO: detect the size of buf and make sure that size(buf) >= size(localbuf).
strcpy(buf, localbuf);
return 1;
}
extern npy_intp
f2py_size_impl(PyArrayObject* var, ...)
{
npy_intp sz = 0;
npy_intp dim;
npy_intp rank;
va_list argp;
va_start(argp, var);
dim = va_arg(argp, npy_int);
if (dim==-1)
{
sz = PyArray_SIZE(var);
}
else
{
rank = PyArray_NDIM(var);
if (dim>=1 && dim<=rank)
sz = PyArray_DIM(var, dim-1);
else
fprintf(stderr, "f2py_size: 2nd argument value=%" NPY_INTP_FMT
" fails to satisfy 1<=value<=%" NPY_INTP_FMT
". Result will be 0.\n", dim, rank);
}
va_end(argp);
return sz;
}
/*********************************************/
/* Compatibility functions for Python >= 3.0 */
/*********************************************/
PyObject *
F2PyCapsule_FromVoidPtr(void *ptr, void (*dtor)(PyObject *))
{
PyObject *ret = PyCapsule_New(ptr, NULL, dtor);
if (ret == NULL) {
PyErr_Clear();
}
return ret;
}
void *
F2PyCapsule_AsVoidPtr(PyObject *obj)
{
void *ret = PyCapsule_GetPointer(obj, NULL);
if (ret == NULL) {
PyErr_Clear();
}
return ret;
}
int
F2PyCapsule_Check(PyObject *ptr)
{
return PyCapsule_CheckExact(ptr);
}
#ifdef __cplusplus
}
#endif
/************************* EOF fortranobject.c *******************************/