import copy
import sys
import gc
import tempfile
import pytest
from os import path
from io import BytesIO
from itertools import chain
import numpy as np
from numpy.testing import (
assert_, assert_equal, IS_PYPY, assert_almost_equal,
assert_array_equal, assert_array_almost_equal, assert_raises,
assert_raises_regex, assert_warns, suppress_warnings,
_assert_valid_refcount, HAS_REFCOUNT, IS_PYSTON
)
from numpy.testing._private.utils import _no_tracing, requires_memory
from numpy.compat import asbytes, asunicode, pickle
class TestRegression:
def test_invalid_round(self):
# Ticket #3
v = 4.7599999999999998
assert_array_equal(np.array([v]), np.array(v))
def test_mem_empty(self):
# Ticket #7
np.empty((1,), dtype=[('x', np.int64)])
def test_pickle_transposed(self):
# Ticket #16
a = np.transpose(np.array([[2, 9], [7, 0], [3, 8]]))
for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
with BytesIO() as f:
pickle.dump(a, f, protocol=proto)
f.seek(0)
b = pickle.load(f)
assert_array_equal(a, b)
def test_dtype_names(self):
# Ticket #35
# Should succeed
np.dtype([(('name', 'label'), np.int32, 3)])
def test_reduce(self):
# Ticket #40
assert_almost_equal(np.add.reduce([1., .5], dtype=None), 1.5)
def test_zeros_order(self):
# Ticket #43
np.zeros([3], int, 'C')
np.zeros([3], order='C')
np.zeros([3], int, order='C')
def test_asarray_with_order(self):
# Check that nothing is done when order='F' and array C/F-contiguous
a = np.ones(2)
assert_(a is np.asarray(a, order='F'))
def test_ravel_with_order(self):
# Check that ravel works when order='F' and array C/F-contiguous
a = np.ones(2)
assert_(not a.ravel('F').flags.owndata)
def test_sort_bigendian(self):
# Ticket #47
a = np.linspace(0, 10, 11)
c = a.astype(np.dtype('<f8'))
c.sort()
assert_array_almost_equal(c, a)
def test_negative_nd_indexing(self):
# Ticket #49
c = np.arange(125).reshape((5, 5, 5))
origidx = np.array([-1, 0, 1])
idx = np.array(origidx)
c[idx]
assert_array_equal(idx, origidx)
def test_char_dump(self):
# Ticket #50
ca = np.char.array(np.arange(1000, 1010), itemsize=4)
for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
with BytesIO() as f:
pickle.dump(ca, f, protocol=proto)
f.seek(0)
ca = np.load(f, allow_pickle=True)
def test_noncontiguous_fill(self):
# Ticket #58.
a = np.zeros((5, 3))
b = a[:, :2,]
def rs():
b.shape = (10,)
assert_raises(AttributeError, rs)
def test_bool(self):
# Ticket #60
np.bool_(1) # Should succeed
def test_indexing1(self):
# Ticket #64
descr = [('x', [('y', [('z', 'c16', (2,)),]),]),]
buffer = ((([6j, 4j],),),)
h = np.array(buffer, dtype=descr)
h['x']['y']['z']
def test_indexing2(self):
# Ticket #65
descr = [('x', 'i4', (2,))]
buffer = ([3, 2],)
h = np.array(buffer, dtype=descr)
h['x']
def test_round(self):
# Ticket #67
x = np.array([1+2j])
assert_almost_equal(x**(-1), [1/(1+2j)])
def test_scalar_compare(self):
# Trac Ticket #72
# https://github.com/numpy/numpy/issues/565
a = np.array(['test', 'auto'])
assert_array_equal(a == 'auto', np.array([False, True]))
assert_(a[1] == 'auto')
assert_(a[0] != 'auto')
b = np.linspace(0, 10, 11)
# This should return true for now, but will eventually raise an error:
with suppress_warnings() as sup:
sup.filter(FutureWarning)
assert_(b != 'auto')
assert_(b[0] != 'auto')
def test_unicode_swapping(self):
# Ticket #79
ulen = 1
ucs_value = u'\U0010FFFF'
ua = np.array([[[ucs_value*ulen]*2]*3]*4, dtype='U%s' % ulen)
ua.newbyteorder() # Should succeed.
def test_object_array_fill(self):
# Ticket #86
x = np.zeros(1, 'O')
x.fill([])
def test_mem_dtype_align(self):
# Ticket #93
assert_raises(TypeError, np.dtype,
{'names':['a'], 'formats':['foo']}, align=1)
def test_endian_bool_indexing(self):
# Ticket #105
a = np.arange(10., dtype='>f8')
b = np.arange(10., dtype='<f8')
xa = np.where((a > 2) & (a < 6))
xb = np.where((b > 2) & (b < 6))
ya = ((a > 2) & (a < 6))
yb = ((b > 2) & (b < 6))
assert_array_almost_equal(xa, ya.nonzero())
assert_array_almost_equal(xb, yb.nonzero())
assert_(np.all(a[ya] > 0.5))
assert_(np.all(b[yb] > 0.5))
def test_endian_where(self):
# GitHub issue #369
net = np.zeros(3, dtype='>f4')
net[1] = 0.00458849
net[2] = 0.605202
max_net = net.max()
test = np.where(net <= 0., max_net, net)
correct = np.array([ 0.60520202, 0.00458849, 0.60520202])
assert_array_almost_equal(test, correct)
def test_endian_recarray(self):
# Ticket #2185
dt = np.dtype([
('head', '>u4'),
('data', '>u4', 2),
])
buf = np.recarray(1, dtype=dt)
buf[0]['head'] = 1
buf[0]['data'][:] = [1, 1]
h = buf[0]['head']
d = buf[0]['data'][0]
buf[0]['head'] = h
buf[0]['data'][0] = d
assert_(buf[0]['head'] == 1)
def test_mem_dot(self):
# Ticket #106
x = np.random.randn(0, 1)
y = np.random.randn(10, 1)
# Dummy array to detect bad memory access:
_z = np.ones(10)
_dummy = np.empty((0, 10))
z = np.lib.stride_tricks.as_strided(_z, _dummy.shape, _dummy.strides)
np.dot(x, np.transpose(y), out=z)
assert_equal(_z, np.ones(10))
# Do the same for the built-in dot:
np.core.multiarray.dot(x, np.transpose(y), out=z)
assert_equal(_z, np.ones(10))
def test_arange_endian(self):
# Ticket #111
ref = np.arange(10)
x = np.arange(10, dtype='<f8')
assert_array_equal(ref, x)
x = np.arange(10, dtype='>f8')
assert_array_equal(ref, x)
def test_arange_inf_step(self):
ref = np.arange(0, 1, 10)
x = np.arange(0, 1, np.inf)
assert_array_equal(ref, x)
ref = np.arange(0, 1, -10)
x = np.arange(0, 1, -np.inf)
assert_array_equal(ref, x)
ref = np.arange(0, -1, -10)
x = np.arange(0, -1, -np.inf)
assert_array_equal(ref, x)
ref = np.arange(0, -1, 10)
x = np.arange(0, -1, np.inf)
assert_array_equal(ref, x)
def test_arange_underflow_stop_and_step(self):
finfo = np.finfo(np.float64)
ref = np.arange(0, finfo.eps, 2 * finfo.eps)
x = np.arange(0, finfo.eps, finfo.max)
assert_array_equal(ref, x)
ref = np.arange(0, finfo.eps, -2 * finfo.eps)
x = np.arange(0, finfo.eps, -finfo.max)
assert_array_equal(ref, x)
ref = np.arange(0, -finfo.eps, -2 * finfo.eps)
x = np.arange(0, -finfo.eps, -finfo.max)
assert_array_equal(ref, x)
ref = np.arange(0, -finfo.eps, 2 * finfo.eps)
x = np.arange(0, -finfo.eps, finfo.max)
assert_array_equal(ref, x)
def test_argmax(self):
# Ticket #119
a = np.random.normal(0, 1, (4, 5, 6, 7, 8))
for i in range(a.ndim):
a.argmax(i) # Should succeed
def test_mem_divmod(self):
# Ticket #126
for i in range(10):
divmod(np.array([i])[0], 10)
def test_hstack_invalid_dims(self):
# Ticket #128
x = np.arange(9).reshape((3, 3))
y = np.array([0, 0, 0])
assert_raises(ValueError, np.hstack, (x, y))
def test_squeeze_type(self):
# Ticket #133
a = np.array([3])
b = np.array(3)
assert_(type(a.squeeze()) is np.ndarray)
assert_(type(b.squeeze()) is np.ndarray)
def test_add_identity(self):
# Ticket #143
assert_equal(0, np.add.identity)
def test_numpy_float_python_long_addition(self):
# Check that numpy float and python longs can be added correctly.
a = np.float_(23.) + 2**135
assert_equal(a, 23. + 2**135)
def test_binary_repr_0(self):
# Ticket #151
assert_equal('0', np.binary_repr(0))
def test_rec_iterate(self):
# Ticket #160
descr = np.dtype([('i', int), ('f', float), ('s', '|S3')])
x = np.rec.array([(1, 1.1, '1.0'),
(2, 2.2, '2.0')], dtype=descr)
x[0].tolist()
[i for i in x[0]]
def test_unicode_string_comparison(self):
# Ticket #190
a = np.array('hello', np.unicode_)
b = np.array('world')
a == b
def test_tobytes_FORTRANORDER_discontiguous(self):
# Fix in r2836
# Create non-contiguous Fortran ordered array
x = np.array(np.random.rand(3, 3), order='F')[:, :2]
assert_array_almost_equal(x.ravel(), np.frombuffer(x.tobytes()))
def test_flat_assignment(self):
# Correct behaviour of ticket #194
x = np.empty((3, 1))
x.flat = np.arange(3)
assert_array_almost_equal(x, [[0], [1], [2]])
x.flat = np.arange(3, dtype=float)
assert_array_almost_equal(x, [[0], [1], [2]])
def test_broadcast_flat_assignment(self):
# Ticket #194
x = np.empty((3, 1))
def bfa():
x[:] = np.arange(3)
def bfb():
x[:] = np.arange(3, dtype=float)
assert_raises(ValueError, bfa)
assert_raises(ValueError, bfb)
def test_nonarray_assignment(self):
# See also Issue gh-2870, test for non-array assignment
# and equivalent unsafe casted array assignment
a = np.arange(10)
b = np.ones(10, dtype=bool)
r = np.arange(10)
def assign(a, b, c):
a[b] = c
assert_raises(ValueError, assign, a, b, np.nan)
a[b] = np.array(np.nan) # but not this.
assert_raises(ValueError, assign, a, r, np.nan)
a[r] = np.array(np.nan)
def test_unpickle_dtype_with_object(self):
# Implemented in r2840
dt = np.dtype([('x', int), ('y', np.object_), ('z', 'O')])
for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
with BytesIO() as f:
pickle.dump(dt, f, protocol=proto)
f.seek(0)
dt_ = pickle.load(f)
assert_equal(dt, dt_)
def test_mem_array_creation_invalid_specification(self):
# Ticket #196
dt = np.dtype([('x', int), ('y', np.object_)])
# Wrong way
assert_raises(ValueError, np.array, [1, 'object'], dt)
# Correct way
np.array([(1, 'object')], dt)
def test_recarray_single_element(self):
# Ticket #202
a = np.array([1, 2, 3], dtype=np.int32)
b = a.copy()
r = np.rec.array(a, shape=1, formats=['3i4'], names=['d'])
assert_array_equal(a, b)
assert_equal(a, r[0][0])
def test_zero_sized_array_indexing(self):
# Ticket #205
tmp = np.array([])
def index_tmp():
tmp[np.array(10)]
assert_raises(IndexError, index_tmp)
def test_chararray_rstrip(self):
# Ticket #222
x = np.chararray((1,), 5)
x[0] = b'a '
x = x.rstrip()
assert_equal(x[0], b'a')
def test_object_array_shape(self):
# Ticket #239
assert_equal(np.array([[1, 2], 3, 4], dtype=object).shape, (3,))
assert_equal(np.array([[1, 2], [3, 4]], dtype=object).shape, (2, 2))
assert_equal(np.array([(1, 2), (3, 4)], dtype=object).shape, (2, 2))
assert_equal(np.array([], dtype=object).shape, (0,))
assert_equal(np.array([[], [], []], dtype=object).shape, (3, 0))
assert_equal(np.array([[3, 4], [5, 6], None], dtype=object).shape, (3,))
def test_mem_around(self):
# Ticket #243
x = np.zeros((1,))
y = [0]
decimal = 6
np.around(abs(x-y), decimal) <= 10.0**(-decimal)
def test_character_array_strip(self):
# Ticket #246
x = np.char.array(("x", "x ", "x "))
for c in x:
assert_equal(c, "x")
def test_lexsort(self):
# Lexsort memory error
v = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
assert_equal(np.lexsort(v), 0)
def test_lexsort_invalid_sequence(self):
# Issue gh-4123
class BuggySequence:
def __len__(self):
return 4
def __getitem__(self, key):
raise KeyError
assert_raises(KeyError, np.lexsort, BuggySequence())
def test_lexsort_zerolen_custom_strides(self):
# Ticket #14228
xs = np.array([], dtype='i8')
assert np.lexsort((xs,)).shape[0] == 0 # Works
xs.strides = (16,)
assert np.lexsort((xs,)).shape[0] == 0 # Was: MemoryError
def test_lexsort_zerolen_custom_strides_2d(self):
xs = np.array([], dtype='i8')
xs.shape = (0, 2)
xs.strides = (16, 16)
assert np.lexsort((xs,), axis=0).shape[0] == 0
xs.shape = (2, 0)
xs.strides = (16, 16)
assert np.lexsort((xs,), axis=0).shape[0] == 2
def test_lexsort_invalid_axis(self):
assert_raises(np.AxisError, np.lexsort, (np.arange(1),), axis=2)
assert_raises(np.AxisError, np.lexsort, (np.array([]),), axis=1)
assert_raises(np.AxisError, np.lexsort, (np.array(1),), axis=10)
def test_lexsort_zerolen_element(self):
dt = np.dtype([]) # a void dtype with no fields
xs = np.empty(4, dt)
assert np.lexsort((xs,)).shape[0] == xs.shape[0]
def test_pickle_py2_bytes_encoding(self):
# Check that arrays and scalars pickled on Py2 are
# unpickleable on Py3 using encoding='bytes'
test_data = [
# (original, py2_pickle)
(np.unicode_('\u6f2c'),
b"cnumpy.core.multiarray\nscalar\np0\n(cnumpy\ndtype\np1\n"
b"(S'U1'\np2\nI0\nI1\ntp3\nRp4\n(I3\nS'<'\np5\nNNNI4\nI4\n"
b"I0\ntp6\nbS',o\\x00\\x00'\np7\ntp8\nRp9\n."),
(np.array([9e123], dtype=np.float64),
b"cnumpy.core.multiarray\n_reconstruct\np0\n(cnumpy\nndarray\n"
b"p1\n(I0\ntp2\nS'b'\np3\ntp4\nRp5\n(I1\n(I1\ntp6\ncnumpy\ndtype\n"
b"p7\n(S'f8'\np8\nI0\nI1\ntp9\nRp10\n(I3\nS'<'\np11\nNNNI-1\nI-1\n"
b"I0\ntp12\nbI00\nS'O\\x81\\xb7Z\\xaa:\\xabY'\np13\ntp14\nb."),
(np.array([(9e123,)], dtype=[('name', float)]),
b"cnumpy.core.multiarray\n_reconstruct\np0\n(cnumpy\nndarray\np1\n"
b"(I0\ntp2\nS'b'\np3\ntp4\nRp5\n(I1\n(I1\ntp6\ncnumpy\ndtype\np7\n"
b"(S'V8'\np8\nI0\nI1\ntp9\nRp10\n(I3\nS'|'\np11\nN(S'name'\np12\ntp13\n"
b"(dp14\ng12\n(g7\n(S'f8'\np15\nI0\nI1\ntp16\nRp17\n(I3\nS'<'\np18\nNNNI-1\n"
b"I-1\nI0\ntp19\nbI0\ntp20\nsI8\nI1\nI0\ntp21\n"
b"bI00\nS'O\\x81\\xb7Z\\xaa:\\xabY'\np22\ntp23\nb."),
]
for original, data in test_data:
result = pickle.loads(data, encoding='bytes')
assert_equal(result, original)
if isinstance(result, np.ndarray) and result.dtype.names is not None:
for name in result.dtype.names:
assert_(isinstance(name, str))
def test_pickle_dtype(self):
# Ticket #251
for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
pickle.dumps(float, protocol=proto)
def test_swap_real(self):
# Ticket #265
assert_equal(np.arange(4, dtype='>c8').imag.max(), 0.0)
assert_equal(np.arange(4, dtype='<c8').imag.max(), 0.0)
assert_equal(np.arange(4, dtype='>c8').real.max(), 3.0)
assert_equal(np.arange(4, dtype='<c8').real.max(), 3.0)
def test_object_array_from_list(self):
# Ticket #270 (gh-868)
assert_(np.array([1, None, 'A']).shape == (3,))
def test_multiple_assign(self):
# Ticket #273
a = np.zeros((3, 1), int)
a[[1, 2]] = 1
def test_empty_array_type(self):
assert_equal(np.array([]).dtype, np.zeros(0).dtype)
def test_void_copyswap(self):
dt = np.dtype([('one', '<i4'), ('two', '<i4')])
x = np.array((1, 2), dtype=dt)
x = x.byteswap()
assert_(x['one'] > 1 and x['two'] > 2)
def test_method_args(self):
# Make sure methods and functions have same default axis
# keyword and arguments
funcs1 = ['argmax', 'argmin', 'sum', ('product', 'prod'),
('sometrue', 'any'),
('alltrue', 'all'), 'cumsum', ('cumproduct', 'cumprod'),
'ptp', 'cumprod', 'prod', 'std', 'var', 'mean',
'round', 'min', 'max', 'argsort', 'sort']
funcs2 = ['compress', 'take', 'repeat']
for func in funcs1:
arr = np.random.rand(8, 7)
arr2 = arr.copy()
if isinstance(func, tuple):
func_meth = func[1]
func = func[0]
else:
func_meth = func
res1 = getattr(arr, func_meth)()
res2 = getattr(np, func)(arr2)
if res1 is None:
res1 = arr
if res1.dtype.kind in 'uib':
assert_((res1 == res2).all(), func)
else:
assert_(abs(res1-res2).max() < 1e-8, func)
for func in funcs2:
arr1 = np.random.rand(8, 7)
arr2 = np.random.rand(8, 7)
res1 = None
if func == 'compress':
arr1 = arr1.ravel()
res1 = getattr(arr2, func)(arr1)
else:
arr2 = (15*arr2).astype(int).ravel()
if res1 is None:
res1 = getattr(arr1, func)(arr2)
res2 = getattr(np, func)(arr1, arr2)
assert_(abs(res1-res2).max() < 1e-8, func)
def test_mem_lexsort_strings(self):
# Ticket #298
lst = ['abc', 'cde', 'fgh']
np.lexsort((lst,))
def test_fancy_index(self):
# Ticket #302
x = np.array([1, 2])[np.array([0])]
assert_equal(x.shape, (1,))
def test_recarray_copy(self):
# Ticket #312
dt = [('x', np.int16), ('y', np.float64)]
ra = np.array([(1, 2.3)], dtype=dt)
rb = np.rec.array(ra, dtype=dt)
rb['x'] = 2.
assert_(ra['x'] != rb['x'])
def test_rec_fromarray(self):
# Ticket #322
x1 = np.array([[1, 2], [3, 4], [5, 6]])
x2 = np.array(['a', 'dd', 'xyz'])
x3 = np.array([1.1, 2, 3])
np.rec.fromarrays([x1, x2, x3], formats="(2,)i4,a3,f8")
def test_object_array_assign(self):
x = np.empty((2, 2), object)
x.flat[2] = (1, 2, 3)
assert_equal(x.flat[2], (1, 2, 3))
def test_ndmin_float64(self):
# Ticket #324
x = np.array([1, 2, 3], dtype=np.float64)
assert_equal(np.array(x, dtype=np.float32, ndmin=2).ndim, 2)
assert_equal(np.array(x, dtype=np.float64, ndmin=2).ndim, 2)
def test_ndmin_order(self):
# Issue #465 and related checks
assert_(np.array([1, 2], order='C', ndmin=3).flags.c_contiguous)
assert_(np.array([1, 2], order='F', ndmin=3).flags.f_contiguous)
assert_(np.array(np.ones((2, 2), order='F'), ndmin=3).flags.f_contiguous)
assert_(np.array(np.ones((2, 2), order='C'), ndmin=3).flags.c_contiguous)
def test_mem_axis_minimization(self):
# Ticket #327
data = np.arange(5)
data = np.add.outer(data, data)
def test_mem_float_imag(self):
# Ticket #330
np.float64(1.0).imag
def test_dtype_tuple(self):
# Ticket #334
assert_(np.dtype('i4') == np.dtype(('i4', ())))
def test_dtype_posttuple(self):
# Ticket #335
np.dtype([('col1', '()i4')])
def test_numeric_carray_compare(self):
# Ticket #341
assert_equal(np.array(['X'], 'c'), b'X')
def test_string_array_size(self):
# Ticket #342
assert_raises(ValueError,
np.array, [['X'], ['X', 'X', 'X']], '|S1')
def test_dtype_repr(self):
# Ticket #344
dt1 = np.dtype(('uint32', 2))
dt2 = np.dtype(('uint32', (2,)))
assert_equal(dt1.__repr__(), dt2.__repr__())
def test_reshape_order(self):
# Make sure reshape order works.
a = np.arange(6).reshape(2, 3, order='F')
assert_equal(a, [[0, 2, 4], [1, 3, 5]])
a = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
b = a[:, 1]
assert_equal(b.reshape(2, 2, order='F'), [[2, 6], [4, 8]])
def test_reshape_zero_strides(self):
# Issue #380, test reshaping of zero strided arrays
a = np.ones(1)
a = np.lib.stride_tricks.as_strided(a, shape=(5,), strides=(0,))
assert_(a.reshape(5, 1).strides[0] == 0)
def test_reshape_zero_size(self):
# GitHub Issue #2700, setting shape failed for 0-sized arrays
a = np.ones((0, 2))
a.shape = (-1, 2)
# Cannot test if NPY_RELAXED_STRIDES_DEBUG changes the strides.
# With NPY_RELAXED_STRIDES_DEBUG the test becomes superfluous.
@pytest.mark.skipif(np.ones(1).strides[0] == np.iinfo(np.intp).max,
reason="Using relaxed stride debug")
def test_reshape_trailing_ones_strides(self):
# GitHub issue gh-2949, bad strides for trailing ones of new shape
a = np.zeros(12, dtype=np.int32)[::2] # not contiguous
strides_c = (16, 8, 8, 8)
strides_f = (8, 24, 48, 48)
assert_equal(a.reshape(3, 2, 1, 1).strides, strides_c)
assert_equal(a.reshape(3, 2, 1, 1, order='F').strides, strides_f)
assert_equal(np.array(0, dtype=np.int32).reshape(1, 1).strides, (4, 4))
def test_repeat_discont(self):
# Ticket #352
a = np.arange(12).reshape(4, 3)[:, 2]
assert_equal(a.repeat(3), [2, 2, 2, 5, 5, 5, 8, 8, 8, 11, 11, 11])
def test_array_index(self):
# Make sure optimization is not called in this case.
a = np.array([1, 2, 3])
a2 = np.array([[1, 2, 3]])
assert_equal(a[np.where(a == 3)], a2[np.where(a2 == 3)])
def test_object_argmax(self):
a = np.array([1, 2, 3], dtype=object)
assert_(a.argmax() == 2)
def test_recarray_fields(self):
# Ticket #372
dt0 = np.dtype([('f0', 'i4'), ('f1', 'i4')])
dt1 = np.dtype([('f0', 'i8'), ('f1', 'i8')])
for a in [np.array([(1, 2), (3, 4)], "i4,i4"),
np.rec.array([(1, 2), (3, 4)], "i4,i4"),
np.rec.array([(1, 2), (3, 4)]),
np.rec.fromarrays([(1, 2), (3, 4)], "i4,i4"),
np.rec.fromarrays([(1, 2), (3, 4)])]:
assert_(a.dtype in [dt0, dt1])
def test_random_shuffle(self):
# Ticket #374
a = np.arange(5).reshape((5, 1))
b = a.copy()
np.random.shuffle(b)
assert_equal(np.sort(b, axis=0), a)
def test_refcount_vdot(self):
# Changeset #3443
_assert_valid_refcount(np.vdot)
def test_startswith(self):
ca = np.char.array(['Hi', 'There'])
assert_equal(ca.startswith('H'), [True, False])
def test_noncommutative_reduce_accumulate(self):
# Ticket #413
tosubtract = np.arange(5)
todivide = np.array([2.0, 0.5, 0.25])
assert_equal(np.subtract.reduce(tosubtract), -10)
assert_equal(np.divide.reduce(todivide), 16.0)
assert_array_equal(np.subtract.accumulate(tosubtract),
np.array([0, -1, -3, -6, -10]))
assert_array_equal(np.divide.accumulate(todivide),
np.array([2., 4., 16.]))
def test_convolve_empty(self):
# Convolve should raise an error for empty input array.
assert_raises(ValueError, np.convolve, [], [1])
assert_raises(ValueError, np.convolve, [1], [])
def test_multidim_byteswap(self):
# Ticket #449
r = np.array([(1, (0, 1, 2))], dtype="i2,3i2")
assert_array_equal(r.byteswap(),
np.array([(256, (0, 256, 512))], r.dtype))
def test_string_NULL(self):
# Changeset 3557
assert_equal(np.array("a\x00\x0b\x0c\x00").item(),
'a\x00\x0b\x0c')
def test_junk_in_string_fields_of_recarray(self):
# Ticket #483
r = np.array([[b'abc']], dtype=[('var1', '|S20')])
assert_(asbytes(r['var1'][0][0]) == b'abc')
def test_take_output(self):
# Ensure that 'take' honours output parameter.
x = np.arange(12).reshape((3, 4))
a = np.take(x, [0, 2], axis=1)
b = np.zeros_like(a)
np.take(x, [0, 2], axis=1, out=b)
assert_array_equal(a, b)
def test_take_object_fail(self):
# Issue gh-3001
d = 123.
a = np.array([d, 1], dtype=object)
if HAS_REFCOUNT:
ref_d = sys.getrefcount(d)
try:
a.take([0, 100])
except IndexError:
pass
if HAS_REFCOUNT:
assert_(ref_d == sys.getrefcount(d))
def test_array_str_64bit(self):
# Ticket #501
s = np.array([1, np.nan], dtype=np.float64)
with np.errstate(all='raise'):
np.array_str(s) # Should succeed
def test_frompyfunc_endian(self):
# Ticket #503
from math import radians
uradians = np.frompyfunc(radians, 1, 1)
big_endian = np.array([83.4, 83.5], dtype='>f8')
little_endian = np.array([83.4, 83.5], dtype='<f8')
assert_almost_equal(uradians(big_endian).astype(float),
uradians(little_endian).astype(float))
def test_mem_string_arr(self):
# Ticket #514
s = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
t = []
np.hstack((t, s))
def test_arr_transpose(self):
# Ticket #516
x = np.random.rand(*(2,)*16)
x.transpose(list(range(16))) # Should succeed
def test_string_mergesort(self):
# Ticket #540
x = np.array(['a']*32)
assert_array_equal(x.argsort(kind='m'), np.arange(32))
def test_argmax_byteorder(self):
# Ticket #546
a = np.arange(3, dtype='>f')
assert_(a[a.argmax()] == a.max())
def test_rand_seed(self):
# Ticket #555
for l in np.arange(4):
np.random.seed(l)
def test_mem_deallocation_leak(self):
# Ticket #562
a = np.zeros(5, dtype=float)
b = np.array(a, dtype=float)
del a, b
def test_mem_on_invalid_dtype(self):
"Ticket #583"
assert_raises(ValueError, np.fromiter, [['12', ''], ['13', '']], str)
def test_dot_negative_stride(self):
# Ticket #588
x = np.array([[1, 5, 25, 125., 625]])
y = np.array([[20.], [160.], [640.], [1280.], [1024.]])
z = y[::-1].copy()
y2 = y[::-1]
assert_equal(np.dot(x, z), np.dot(x, y2))
def test_object_casting(self):
# This used to trigger the object-type version of
# the bitwise_or operation, because float64 -> object
# casting succeeds
def rs():
x = np.ones([484, 286])
y = np.zeros([484, 286])
x |= y
assert_raises(TypeError, rs)
def test_unicode_scalar(self):
# Ticket #600
x = np.array(["DROND", "DROND1"], dtype="U6")
el = x[1]
for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
new = pickle.loads(pickle.dumps(el, protocol=proto))
assert_equal(new, el)
def test_arange_non_native_dtype(self):
# Ticket #616
for T in ('>f4', '<f4'):
dt = np.dtype(T)
assert_equal(np.arange(0, dtype=dt).dtype, dt)
assert_equal(np.arange(0.5, dtype=dt).dtype, dt)
assert_equal(np.arange(5, dtype=dt).dtype, dt)
def test_bool_flat_indexing_invalid_nr_elements(self):
s = np.ones(10, dtype=float)
x = np.array((15,), dtype=float)
def ia(x, s, v):
x[(s > 0)] = v
assert_raises(IndexError, ia, x, s, np.zeros(9, dtype=float))
assert_raises(IndexError, ia, x, s, np.zeros(11, dtype=float))
# Old special case (different code path):
assert_raises(ValueError, ia, x.flat, s, np.zeros(9, dtype=float))
assert_raises(ValueError, ia, x.flat, s, np.zeros(11, dtype=float))
def test_mem_scalar_indexing(self):
# Ticket #603
x = np.array([0], dtype=float)
index = np.array(0, dtype=np.int32)
x[index]
def test_binary_repr_0_width(self):
assert_equal(np.binary_repr(0, width=3), '000')
def test_fromstring(self):
assert_equal(np.fromstring("12:09:09", dtype=int, sep=":"),
[12, 9, 9])
def test_searchsorted_variable_length(self):
x = np.array(['a', 'aa', 'b'])
y = np.array(['d', 'e'])
assert_equal(x.searchsorted(y), [3, 3])
def test_string_argsort_with_zeros(self):
# Check argsort for strings containing zeros.
x = np.frombuffer(b"\x00\x02\x00\x01", dtype="|S2")
assert_array_equal(x.argsort(kind='m'), np.array([1, 0]))
assert_array_equal(x.argsort(kind='q'), np.array([1, 0]))
def test_string_sort_with_zeros(self):
# Check sort for strings containing zeros.
x = np.frombuffer(b"\x00\x02\x00\x01", dtype="|S2")
y = np.frombuffer(b"\x00\x01\x00\x02", dtype="|S2")
assert_array_equal(np.sort(x, kind="q"), y)
def test_copy_detection_zero_dim(self):
# Ticket #658
np.indices((0, 3, 4)).T.reshape(-1, 3)
def test_flat_byteorder(self):
# Ticket #657
x = np.arange(10)
assert_array_equal(x.astype('>i4'), x.astype('<i4').flat[:])
assert_array_equal(x.astype('>i4').flat[:], x.astype('<i4'))
def test_sign_bit(self):
x = np.array([0, -0.0, 0])
assert_equal(str(np.abs(x)), '[0. 0. 0.]')
def test_flat_index_byteswap(self):
for dt in (np.dtype('<i4'), np.dtype('>i4')):
x = np.array([-1, 0, 1], dtype=dt)
assert_equal(x.flat[0].dtype, x[0].dtype)
def test_copy_detection_corner_case(self):
# Ticket #658
np.indices((0, 3, 4)).T.reshape(-1, 3)
# Cannot test if NPY_RELAXED_STRIDES_DEBUG changes the strides.
# With NPY_RELAXED_STRIDES_DEBUG the test becomes superfluous,
# 0-sized reshape itself is tested elsewhere.
@pytest.mark.skipif(np.ones(1).strides[0] == np.iinfo(np.intp).max,
reason="Using relaxed stride debug")
def test_copy_detection_corner_case2(self):
# Ticket #771: strides are not set correctly when reshaping 0-sized
# arrays
b = np.indices((0, 3, 4)).T.reshape(-1, 3)
assert_equal(b.strides, (3 * b.itemsize, b.itemsize))
def test_object_array_refcounting(self):
# Ticket #633
if not hasattr(sys, 'getrefcount'):
return
# NB. this is probably CPython-specific
cnt = sys.getrefcount
a = object()
b = object()
c = object()
cnt0_a = cnt(a)
cnt0_b = cnt(b)
cnt0_c = cnt(c)
# -- 0d -> 1-d broadcast slice assignment
arr = np.zeros(5, dtype=np.object_)
arr[:] = a
assert_equal(cnt(a), cnt0_a + 5)
arr[:] = b
assert_equal(cnt(a), cnt0_a)
assert_equal(cnt(b), cnt0_b + 5)
arr[:2] = c
assert_equal(cnt(b), cnt0_b + 3)
assert_equal(cnt(c), cnt0_c + 2)
del arr
# -- 1-d -> 2-d broadcast slice assignment
arr = np.zeros((5, 2), dtype=np.object_)
arr0 = np.zeros(2, dtype=np.object_)
arr0[0] = a
assert_(cnt(a) == cnt0_a + 1)
arr0[1] = b
assert_(cnt(b) == cnt0_b + 1)
arr[:, :] = arr0
assert_(cnt(a) == cnt0_a + 6)
assert_(cnt(b) == cnt0_b + 6)
arr[:, 0] = None
assert_(cnt(a) == cnt0_a + 1)
del arr, arr0
# -- 2-d copying + flattening
arr = np.zeros((5, 2), dtype=np.object_)
arr[:, 0] = a
arr[:, 1] = b
assert_(cnt(a) == cnt0_a + 5)
assert_(cnt(b) == cnt0_b + 5)
arr2 = arr.copy()
assert_(cnt(a) == cnt0_a + 10)
assert_(cnt(b) == cnt0_b + 10)
arr2 = arr[:, 0].copy()
assert_(cnt(a) == cnt0_a + 10)
assert_(cnt(b) == cnt0_b + 5)
arr2 = arr.flatten()
assert_(cnt(a) == cnt0_a + 10)
assert_(cnt(b) == cnt0_b + 10)
del arr, arr2
# -- concatenate, repeat, take, choose
arr1 = np.zeros((5, 1), dtype=np.object_)
arr2 = np.zeros((5, 1), dtype=np.object_)
arr1[...] = a
arr2[...] = b
assert_(cnt(a) == cnt0_a + 5)
assert_(cnt(b) == cnt0_b + 5)
tmp = np.concatenate((arr1, arr2))
assert_(cnt(a) == cnt0_a + 5 + 5)
assert_(cnt(b) == cnt0_b + 5 + 5)
tmp = arr1.repeat(3, axis=0)
assert_(cnt(a) == cnt0_a + 5 + 3*5)
tmp = arr1.take([1, 2, 3], axis=0)
assert_(cnt(a) == cnt0_a + 5 + 3)
x = np.array([[0], [1], [0], [1], [1]], int)
tmp = x.choose(arr1, arr2)
assert_(cnt(a) == cnt0_a + 5 + 2)
assert_(cnt(b) == cnt0_b + 5 + 3)
del tmp # Avoid pyflakes unused variable warning
def test_mem_custom_float_to_array(self):
# Ticket 702
class MyFloat:
def __float__(self):
return 1.0
tmp = np.atleast_1d([MyFloat()])
tmp.astype(float) # Should succeed
def test_object_array_refcount_self_assign(self):
# Ticket #711
class VictimObject:
deleted = False
def __del__(self):
self.deleted = True
d = VictimObject()
arr = np.zeros(5, dtype=np.object_)
arr[:] = d
del d
arr[:] = arr # refcount of 'd' might hit zero here
assert_(not arr[0].deleted)
arr[:] = arr # trying to induce a segfault by doing it again...
assert_(not arr[0].deleted)
def test_mem_fromiter_invalid_dtype_string(self):
x = [1, 2, 3]
assert_raises(ValueError,
np.fromiter, [xi for xi in x], dtype='S')
def test_reduce_big_object_array(self):
# Ticket #713
oldsize = np.setbufsize(10*16)
a = np.array([None]*161, object)
assert_(not np.any(a))
np.setbufsize(oldsize)
def test_mem_0d_array_index(self):
# Ticket #714
np.zeros(10)[np.array(0)]
def test_nonnative_endian_fill(self):
# Non-native endian arrays were incorrectly filled with scalars
# before r5034.
if sys.byteorder == 'little':
dtype = np.dtype('>i4')
else:
dtype = np.dtype('<i4')
x = np.empty([1], dtype=dtype)
x.fill(1)
assert_equal(x, np.array([1], dtype=dtype))
def test_dot_alignment_sse2(self):
# Test for ticket #551, changeset r5140
x = np.zeros((30, 40))
for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
y = pickle.loads(pickle.dumps(x, protocol=proto))
# y is now typically not aligned on a 8-byte boundary
z = np.ones((1, y.shape[0]))
# This shouldn't cause a segmentation fault:
np.dot(z, y)
def test_astype_copy(self):
# Ticket #788, changeset r5155
# The test data file was generated by scipy.io.savemat.
# The dtype is float64, but the isbuiltin attribute is 0.
data_dir = path.join(path.dirname(__file__), 'data')
filename = path.join(data_dir, "astype_copy.pkl")
with open(filename, 'rb') as f:
xp = pickle.load(f, encoding='latin1')
xpd = xp.astype(np.float64)
assert_((xp.__array_interface__['data'][0] !=
xpd.__array_interface__['data'][0]))
def test_compress_small_type(self):
# Ticket #789, changeset 5217.
# compress with out argument segfaulted if cannot cast safely
import numpy as np
a = np.array([[1, 2], [3, 4]])
b = np.zeros((2, 1), dtype=np.single)
try:
a.compress([True, False], axis=1, out=b)
raise AssertionError("compress with an out which cannot be "
"safely casted should not return "
"successfully")
except TypeError:
pass
def test_attributes(self):
# Ticket #791
class TestArray(np.ndarray):
def __new__(cls, data, info):
result = np.array(data)
result = result.view(cls)
result.info = info
return result
def __array_finalize__(self, obj):
self.info = getattr(obj, 'info', '')
dat = TestArray([[1, 2, 3, 4], [5, 6, 7, 8]], 'jubba')
assert_(dat.info == 'jubba')
dat.resize((4, 2))
assert_(dat.info == 'jubba')
dat.sort()
assert_(dat.info == 'jubba')
dat.fill(2)
assert_(dat.info == 'jubba')
dat.put([2, 3, 4], [6, 3, 4])
assert_(dat.info == 'jubba')
dat.setfield(4, np.int32, 0)
assert_(dat.info == 'jubba')
dat.setflags()
assert_(dat.info == 'jubba')
assert_(dat.all(1).info == 'jubba')
assert_(dat.any(1).info == 'jubba')
assert_(dat.argmax(1).info == 'jubba')
assert_(dat.argmin(1).info == 'jubba')
assert_(dat.argsort(1).info == 'jubba')
assert_(dat.astype(TestArray).info == 'jubba')
assert_(dat.byteswap().info == 'jubba')
assert_(dat.clip(2, 7).info == 'jubba')
assert_(dat.compress([0, 1, 1]).info == 'jubba')
assert_(dat.conj().info == 'jubba')
assert_(dat.conjugate().info == 'jubba')
assert_(dat.copy().info == 'jubba')
dat2 = TestArray([2, 3, 1, 0], 'jubba')
choices = [[0, 1, 2, 3], [10, 11, 12, 13],
[20, 21, 22, 23], [30, 31, 32, 33]]
assert_(dat2.choose(choices).info == 'jubba')
assert_(dat.cumprod(1).info == 'jubba')
assert_(dat.cumsum(1).info == 'jubba')
assert_(dat.diagonal().info == 'jubba')
assert_(dat.flatten().info == 'jubba')
assert_(dat.getfield(np.int32, 0).info == 'jubba')
assert_(dat.imag.info == 'jubba')
assert_(dat.max(1).info == 'jubba')
assert_(dat.mean(1).info == 'jubba')
assert_(dat.min(1).info == 'jubba')
assert_(dat.newbyteorder().info == 'jubba')
assert_(dat.prod(1).info == 'jubba')
assert_(dat.ptp(1).info == 'jubba')
assert_(dat.ravel().info == 'jubba')
assert_(dat.real.info == 'jubba')
assert_(dat.repeat(2).info == 'jubba')
assert_(dat.reshape((2, 4)).info == 'jubba')
assert_(dat.round().info == 'jubba')
assert_(dat.squeeze().info == 'jubba')
assert_(dat.std(1).info == 'jubba')
assert_(dat.sum(1).info == 'jubba')
assert_(dat.swapaxes(0, 1).info == 'jubba')
assert_(dat.take([2, 3, 5]).info == 'jubba')
assert_(dat.transpose().info == 'jubba')
assert_(dat.T.info == 'jubba')
assert_(dat.var(1).info == 'jubba')
assert_(dat.view(TestArray).info == 'jubba')
# These methods do not preserve subclasses
assert_(type(dat.nonzero()[0]) is np.ndarray)
assert_(type(dat.nonzero()[1]) is np.ndarray)
def test_recarray_tolist(self):
# Ticket #793, changeset r5215
# Comparisons fail for NaN, so we can't use random memory
# for the test.
buf = np.zeros(40, dtype=np.int8)
a = np.recarray(2, formats="i4,f8,f8", names="id,x,y", buf=buf)
b = a.tolist()
assert_( a[0].tolist() == b[0])
assert_( a[1].tolist() == b[1])
def test_nonscalar_item_method(self):
# Make sure that .item() fails graciously when it should
a = np.arange(5)
assert_raises(ValueError, a.item)
def test_char_array_creation(self):
a = np.array('123', dtype='c')
b = np.array([b'1', b'2', b'3'])
assert_equal(a, b)
def test_unaligned_unicode_access(self):
# Ticket #825
for i in range(1, 9):
msg = 'unicode offset: %d chars' % i
t = np.dtype([('a', 'S%d' % i), ('b', 'U2')])
x = np.array([(b'a', u'b')], dtype=t)
assert_equal(str(x), "[(b'a', 'b')]", err_msg=msg)
def test_sign_for_complex_nan(self):
# Ticket 794.
with np.errstate(invalid='ignore'):
C = np.array([-np.inf, -2+1j, 0, 2-1j, np.inf, np.nan])
have = np.sign(C)
want = np.array([-1+0j, -1+0j, 0+0j, 1+0j, 1+0j, np.nan])
assert_equal(have, want)
def test_for_equal_names(self):
# Ticket #674
dt = np.dtype([('foo', float), ('bar', float)])
a = np.zeros(10, dt)
b = list(a.dtype.names)
b[0] = "notfoo"
a.dtype.names = b
assert_(a.dtype.names[0] == "notfoo")
assert_(a.dtype.names[1] == "bar")
def test_for_object_scalar_creation(self):
# Ticket #816
a = np.object_()
b = np.object_(3)
b2 = np.object_(3.0)
c = np.object_([4, 5])
d = np.object_([None, {}, []])
assert_(a is None)
assert_(type(b) is int)
assert_(type(b2) is float)
assert_(type(c) is np.ndarray)
assert_(c.dtype == object)
assert_(d.dtype == object)
def test_array_resize_method_system_error(self):
# Ticket #840 - order should be an invalid keyword.
x = np.array([[0, 1], [2, 3]])
assert_raises(TypeError, x.resize, (2, 2), order='C')
def test_for_zero_length_in_choose(self):
"Ticket #882"
a = np.array(1)
assert_raises(ValueError, lambda x: x.choose([]), a)
def test_array_ndmin_overflow(self):
"Ticket #947."
assert_raises(ValueError, lambda: np.array([1], ndmin=33))
def test_void_scalar_with_titles(self):
# No ticket
data = [('john', 4), ('mary', 5)]
dtype1 = [(('source:yy', 'name'), 'O'), (('source:xx', 'id'), int)]
arr = np.array(data, dtype=dtype1)
assert_(arr[0][0] == 'john')
assert_(arr[0][1] == 4)
def test_void_scalar_constructor(self):
#Issue #1550
#Create test string data, construct void scalar from data and assert
#that void scalar contains original data.
test_string = np.array("test")
test_string_void_scalar = np.core.multiarray.scalar(
np.dtype(("V", test_string.dtype.itemsize)), test_string.tobytes())
assert_(test_string_void_scalar.view(test_string.dtype) == test_string)
#Create record scalar, construct from data and assert that
#reconstructed scalar is correct.
test_record = np.ones((), "i,i")
test_record_void_scalar = np.core.multiarray.scalar(
test_record.dtype, test_record.tobytes())
assert_(test_record_void_scalar == test_record)
# Test pickle and unpickle of void and record scalars
for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
assert_(pickle.loads(
pickle.dumps(test_string, protocol=proto)) == test_string)
assert_(pickle.loads(
pickle.dumps(test_record, protocol=proto)) == test_record)
@_no_tracing
def test_blasdot_uninitialized_memory(self):
# Ticket #950
for m in [0, 1, 2]:
for n in [0, 1, 2]:
for k in range(3):
# Try to ensure that x->data contains non-zero floats
x = np.array([123456789e199], dtype=np.float64)
if IS_PYPY:
x.resize((m, 0), refcheck=False)
else:
x.resize((m, 0))
y = np.array([123456789e199], dtype=np.float64)
if IS_PYPY:
y.resize((0, n), refcheck=False)
else:
y.resize((0, n))
# `dot` should just return zero (m, n) matrix
z = np.dot(x, y)
assert_(np.all(z == 0))
assert_(z.shape == (m, n))
def test_zeros(self):
# Regression test for #1061.
# Set a size which cannot fit into a 64 bits signed integer
sz = 2 ** 64
with assert_raises_regex(ValueError,
'Maximum allowed dimension exceeded'):
np.empty(sz)
def test_huge_arange(self):
# Regression test for #1062.
# Set a size which cannot fit into a 64 bits signed integer
sz = 2 ** 64
with assert_raises_regex(ValueError,
'Maximum allowed size exceeded'):
np.arange(sz)
assert_(np.size == sz)
def test_fromiter_bytes(self):
# Ticket #1058
a = np.fromiter(list(range(10)), dtype='b')
b = np.fromiter(list(range(10)), dtype='B')
assert_(np.alltrue(a == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
assert_(np.alltrue(b == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
def test_array_from_sequence_scalar_array(self):
# Ticket #1078: segfaults when creating an array with a sequence of
# 0d arrays.
a = np.array((np.ones(2), np.array(2)), dtype=object)
assert_equal(a.shape, (2,))
assert_equal(a.dtype, np.dtype(object))
assert_equal(a[0], np.ones(2))
assert_equal(a[1], np.array(2))
a = np.array(((1,), np.array(1)), dtype=object)
assert_equal(a.shape, (2,))
assert_equal(a.dtype, np.dtype(object))
assert_equal(a[0], (1,))
assert_equal(a[1], np.array(1))
def test_array_from_sequence_scalar_array2(self):
# Ticket #1081: weird array with strange input...
t = np.array([np.array([]), np.array(0, object)], dtype=object)
assert_equal(t.shape, (2,))
assert_equal(t.dtype, np.dtype(object))
def test_array_too_big(self):
# Ticket #1080.
assert_raises(ValueError, np.zeros, [975]*7, np.int8)
assert_raises(ValueError, np.zeros, [26244]*5, np.int8)
def test_dtype_keyerrors_(self):
# Ticket #1106.
dt = np.dtype([('f1', np.uint)])
assert_raises(KeyError, dt.__getitem__, "f2")
assert_raises(IndexError, dt.__getitem__, 1)
assert_raises(TypeError, dt.__getitem__, 0.0)
def test_lexsort_buffer_length(self):
# Ticket #1217, don't segfault.
a = np.ones(100, dtype=np.int8)
b = np.ones(100, dtype=np.int32)
i = np.lexsort((a[::-1], b))
assert_equal(i, np.arange(100, dtype=int))
def test_object_array_to_fixed_string(self):
# Ticket #1235.
a = np.array(['abcdefgh', 'ijklmnop'], dtype=np.object_)
b = np.array(a, dtype=(np.str_, 8))
assert_equal(a, b)
c = np.array(a, dtype=(np.str_, 5))
assert_equal(c, np.array(['abcde', 'ijklm']))
d = np.array(a, dtype=(np.str_, 12))
assert_equal(a, d)
e = np.empty((2, ), dtype=(np.str_, 8))
e[:] = a[:]
assert_equal(a, e)
def test_unicode_to_string_cast(self):
# Ticket #1240.
a = np.array([[u'abc', u'\u03a3'],
[u'asdf', u'erw']],
dtype='U')
assert_raises(UnicodeEncodeError, np.array, a, 'S4')
def test_unicode_to_string_cast_error(self):
# gh-15790
a = np.array([u'\x80'] * 129, dtype='U3')
assert_raises(UnicodeEncodeError, np.array, a, 'S')
b = a.reshape(3, 43)[:-1, :-1]
assert_raises(UnicodeEncodeError, np.array, b, 'S')
def test_mixed_string_unicode_array_creation(self):
a = np.array(['1234', u'123'])
assert_(a.itemsize == 16)
a = np.array([u'123', '1234'])
assert_(a.itemsize == 16)
a = np.array(['1234', u'123', '12345'])
assert_(a.itemsize == 20)
a = np.array([u'123', '1234', u'12345'])
assert_(a.itemsize == 20)
a = np.array([u'123', '1234', u'1234'])
assert_(a.itemsize == 16)
def test_misaligned_objects_segfault(self):
# Ticket #1198 and #1267
a1 = np.zeros((10,), dtype='O,c')
a2 = np.array(['a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j'], 'S10')
a1['f0'] = a2
repr(a1)
np.argmax(a1['f0'])
a1['f0'][1] = "FOO"
a1['f0'] = "FOO"
np.array(a1['f0'], dtype='S')
np.nonzero(a1['f0'])
a1.sort()
copy.deepcopy(a1)
def test_misaligned_scalars_segfault(self):
# Ticket #1267
s1 = np.array(('a', 'Foo'), dtype='c,O')
s2 = np.array(('b', 'Bar'), dtype='c,O')
s1['f1'] = s2['f1']
s1['f1'] = 'Baz'
def test_misaligned_dot_product_objects(self):
# Ticket #1267
# This didn't require a fix, but it's worth testing anyway, because
# it may fail if .dot stops enforcing the arrays to be BEHAVED
a = np.array([[(1, 'a'), (0, 'a')], [(0, 'a'), (1, 'a')]], dtype='O,c')
b = np.array([[(4, 'a'), (1, 'a')], [(2, 'a'), (2, 'a')]], dtype='O,c')
np.dot(a['f0'], b['f0'])
def test_byteswap_complex_scalar(self):
# Ticket #1259 and gh-441
for dtype in [np.dtype('<'+t) for t in np.typecodes['Complex']]:
z = np.array([2.2-1.1j], dtype)
x = z[0] # always native-endian
y = x.byteswap()
if x.dtype.byteorder == z.dtype.byteorder:
# little-endian machine
assert_equal(x, np.frombuffer(y.tobytes(), dtype=dtype.newbyteorder()))
else:
# big-endian machine
assert_equal(x, np.frombuffer(y.tobytes(), dtype=dtype))
# double check real and imaginary parts:
assert_equal(x.real, y.real.byteswap())
assert_equal(x.imag, y.imag.byteswap())
def test_structured_arrays_with_objects1(self):
# Ticket #1299
stra = 'aaaa'
strb = 'bbbb'
x = np.array([[(0, stra), (1, strb)]], 'i8,O')
x[x.nonzero()] = x.ravel()[:1]
assert_(x[0, 1] == x[0, 0])
@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
def test_structured_arrays_with_objects2(self):
# Ticket #1299 second test
stra = 'aaaa'
strb = 'bbbb'
numb = sys.getrefcount(strb)
numa = sys.getrefcount(stra)
x = np.array([[(0, stra), (1, strb)]], 'i8,O')
x[x.nonzero()] = x.ravel()[:1]
assert_(sys.getrefcount(strb) == numb)
assert_(sys.getrefcount(stra) == numa + 2)
def test_duplicate_title_and_name(self):
# Ticket #1254
dtspec = [(('a', 'a'), 'i'), ('b', 'i')]
assert_raises(ValueError, np.dtype, dtspec)
def test_signed_integer_division_overflow(self):
# Ticket #1317.
def test_type(t):
min = np.array([np.iinfo(t).min])
min //= -1
with np.errstate(divide="ignore"):
for t in (np.int8, np.int16, np.int32, np.int64, int):
test_type(t)
def test_buffer_hashlib(self):
from hashlib import sha256
x = np.array([1, 2, 3], dtype=np.dtype('<i4'))
assert_equal(sha256(x).hexdigest(), '4636993d3e1da4e9d6b8f87b79e8f7c6d018580d52661950eabc3845c5897a4d')
def test_0d_string_scalar(self):
# Bug #1436; the following should succeed
np.asarray('x', '>c')
def test_log1p_compiler_shenanigans(self):
# Check if log1p is behaving on 32 bit intel systems.
assert_(np.isfinite(np.log1p(np.exp2(-53))))
def test_fromiter_comparison(self):
a = np.fromiter(list(range(10)), dtype='b')
b = np.fromiter(list(range(10)), dtype='B')
assert_(np.alltrue(a == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
assert_(np.alltrue(b == np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])))
def test_fromstring_crash(self):
# Ticket #1345: the following should not cause a crash
with assert_warns(DeprecationWarning):
np.fromstring(b'aa, aa, 1.0', sep=',')
def test_ticket_1539(self):
dtypes = [x for x in np.sctypeDict.values()
if (issubclass(x, np.number)
and not issubclass(x, np.timedelta64))]
a = np.array([], np.bool_) # not x[0] because it is unordered
failures = []
for x in dtypes:
b = a.astype(x)
for y in dtypes:
c = a.astype(y)
try:
np.dot(b, c)
except TypeError:
failures.append((x, y))
if failures:
raise AssertionError("Failures: %r" % failures)
def test_ticket_1538(self):
x = np.finfo(np.float32)
for name in 'eps epsneg max min resolution tiny'.split():
assert_equal(type(getattr(x, name)), np.float32,
err_msg=name)
def test_ticket_1434(self):
# Check that the out= argument in var and std has an effect
data = np.array(((1, 2, 3), (4, 5, 6), (7, 8, 9)))
out = np.zeros((3,))
ret = data.var(axis=1, out=out)
assert_(ret is out)
assert_array_equal(ret, data.var(axis=1))
ret = data.std(axis=1, out=out)
assert_(ret is out)
assert_array_equal(ret, data.std(axis=1))
def test_complex_nan_maximum(self):
cnan = complex(0, np.nan)
assert_equal(np.maximum(1, cnan), cnan)
def test_subclass_int_tuple_assignment(self):
# ticket #1563
class Subclass(np.ndarray):
def __new__(cls, i):
return np.ones((i,)).view(cls)
x = Subclass(5)
x[(0,)] = 2 # shouldn't raise an exception
assert_equal(x[0], 2)
def test_ufunc_no_unnecessary_views(self):
# ticket #1548
class Subclass(np.ndarray):
pass
x = np.array([1, 2, 3]).view(Subclass)
y = np.add(x, x, x)
assert_equal(id(x), id(y))
@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
def test_take_refcount(self):
# ticket #939
a = np.arange(16, dtype=float)
a.shape = (4, 4)
lut = np.ones((5 + 3, 4), float)
rgba = np.empty(shape=a.shape + (4,), dtype=lut.dtype)
c1 = sys.getrefcount(rgba)
try:
lut.take(a, axis=0, mode='clip', out=rgba)
except TypeError:
pass
c2 = sys.getrefcount(rgba)
assert_equal(c1, c2)
def test_fromfile_tofile_seeks(self):
# On Python 3, tofile/fromfile used to get (#1610) the Python
# file handle out of sync
f0 = tempfile.NamedTemporaryFile()
f = f0.file
f.write(np.arange(255, dtype='u1').tobytes())
f.seek(20)
ret = np.fromfile(f, count=4, dtype='u1')
assert_equal(ret, np.array([20, 21, 22, 23], dtype='u1'))
assert_equal(f.tell(), 24)
f.seek(40)
np.array([1, 2, 3], dtype='u1').tofile(f)
assert_equal(f.tell(), 43)
f.seek(40)
data = f.read(3)
assert_equal(data, b"\x01\x02\x03")
f.seek(80)
f.read(4)
data = np.fromfile(f, dtype='u1', count=4)
assert_equal(data, np.array([84, 85, 86, 87], dtype='u1'))
f.close()
def test_complex_scalar_warning(self):
for tp in [np.csingle, np.cdouble, np.clongdouble]:
x = tp(1+2j)
assert_warns(np.ComplexWarning, float, x)
with suppress_warnings() as sup:
sup.filter(np.ComplexWarning)
assert_equal(float(x), float(x.real))
def test_complex_scalar_complex_cast(self):
for tp in [np.csingle, np.cdouble, np.clongdouble]:
x = tp(1+2j)
assert_equal(complex(x), 1+2j)
def test_complex_boolean_cast(self):
# Ticket #2218
for tp in [np.csingle, np.cdouble, np.clongdouble]:
x = np.array([0, 0+0.5j, 0.5+0j], dtype=tp)
assert_equal(x.astype(bool), np.array([0, 1, 1], dtype=bool))
assert_(np.any(x))
assert_(np.all(x[1:]))
def test_uint_int_conversion(self):
x = 2**64 - 1
assert_equal(int(np.uint64(x)), x)
def test_duplicate_field_names_assign(self):
ra = np.fromiter(((i*3, i*2) for i in range(10)), dtype='i8,f8')
ra.dtype.names = ('f1', 'f2')
repr(ra) # should not cause a segmentation fault
assert_raises(ValueError, setattr, ra.dtype, 'names', ('f1', 'f1'))
def test_eq_string_and_object_array(self):
# From e-mail thread "__eq__ with str and object" (Keith Goodman)
a1 = np.array(['a', 'b'], dtype=object)
a2 = np.array(['a', 'c'])
assert_array_equal(a1 == a2, [True, False])
assert_array_equal(a2 == a1, [True, False])
def test_nonzero_byteswap(self):
a = np.array([0x80000000, 0x00000080, 0], dtype=np.uint32)
a.dtype = np.float32
assert_equal(a.nonzero()[0], [1])
a = a.byteswap().newbyteorder()
assert_equal(a.nonzero()[0], [1]) # [0] if nonzero() ignores swap
def test_find_common_type_boolean(self):
# Ticket #1695
assert_(np.find_common_type([], ['?', '?']) == '?')
def test_empty_mul(self):
a = np.array([1.])
a[1:1] *= 2
assert_equal(a, [1.])
def test_array_side_effect(self):
# The second use of itemsize was throwing an exception because in
# ctors.c, discover_itemsize was calling PyObject_Length without
# checking the return code. This failed to get the length of the
# number 2, and the exception hung around until something checked
# PyErr_Occurred() and returned an error.
assert_equal(np.dtype('S10').itemsize, 10)
np.array([['abc', 2], ['long ', '0123456789']], dtype=np.string_)
assert_equal(np.dtype('S10').itemsize, 10)
def test_any_float(self):
# all and any for floats
a = np.array([0.1, 0.9])
assert_(np.any(a))
assert_(np.all(a))
def test_large_float_sum(self):
a = np.arange(10000, dtype='f')
assert_equal(a.sum(dtype='d'), a.astype('d').sum())
def test_ufunc_casting_out(self):
a = np.array(1.0, dtype=np.float32)
b = np.array(1.0, dtype=np.float64)
c = np.array(1.0, dtype=np.float32)
np.add(a, b, out=c)
assert_equal(c, 2.0)
def test_array_scalar_contiguous(self):
# Array scalars are both C and Fortran contiguous
assert_(np.array(1.0).flags.c_contiguous)
assert_(np.array(1.0).flags.f_contiguous)
assert_(np.array(np.float32(1.0)).flags.c_contiguous)
assert_(np.array(np.float32(1.0)).flags.f_contiguous)
def test_squeeze_contiguous(self):
# Similar to GitHub issue #387
a = np.zeros((1, 2)).squeeze()
b = np.zeros((2, 2, 2), order='F')[:, :, ::2].squeeze()
assert_(a.flags.c_contiguous)
assert_(a.flags.f_contiguous)
assert_(b.flags.f_contiguous)
def test_squeeze_axis_handling(self):
# Issue #10779
# Ensure proper handling of objects
# that don't support axis specification
# when squeezing
class OldSqueeze(np.ndarray):
def __new__(cls,
input_array):
obj = np.asarray(input_array).view(cls)
return obj
# it is perfectly reasonable that prior
# to numpy version 1.7.0 a subclass of ndarray
# might have been created that did not expect
# squeeze to have an axis argument
# NOTE: this example is somewhat artificial;
# it is designed to simulate an old API
# expectation to guard against regression
def squeeze(self):
return super().squeeze()
oldsqueeze = OldSqueeze(np.array([[1],[2],[3]]))
# if no axis argument is specified the old API
# expectation should give the correct result
assert_equal(np.squeeze(oldsqueeze),
np.array([1,2,3]))
# likewise, axis=None should work perfectly well
# with the old API expectation
assert_equal(np.squeeze(oldsqueeze, axis=None),
np.array([1,2,3]))
# however, specification of any particular axis
# should raise a TypeError in the context of the
# old API specification, even when using a valid
# axis specification like 1 for this array
with assert_raises(TypeError):
# this would silently succeed for array
# subclasses / objects that did not support
# squeeze axis argument handling before fixing
# Issue #10779
np.squeeze(oldsqueeze, axis=1)
# check for the same behavior when using an invalid
# axis specification -- in this case axis=0 does not
# have size 1, but the priority should be to raise
# a TypeError for the axis argument and NOT a
# ValueError for squeezing a non-empty dimension
with assert_raises(TypeError):
np.squeeze(oldsqueeze, axis=0)
# the new API knows how to handle the axis
# argument and will return a ValueError if
# attempting to squeeze an axis that is not
# of length 1
with assert_raises(ValueError):
np.squeeze(np.array([[1],[2],[3]]), axis=0)
def test_reduce_contiguous(self):
# GitHub issue #387
a = np.add.reduce(np.zeros((2, 1, 2)), (0, 1))
b = np.add.reduce(np.zeros((2, 1, 2)), 1)
assert_(a.flags.c_contiguous)
assert_(a.flags.f_contiguous)
assert_(b.flags.c_contiguous)
@pytest.mark.skipif(IS_PYSTON, reason="Pyston disables recursion checking")
def test_object_array_self_reference(self):
# Object arrays with references to themselves can cause problems
a = np.array(0, dtype=object)
a[()] = a
assert_raises(RecursionError, int, a)
assert_raises(RecursionError, float, a)
a[()] = None
@pytest.mark.skipif(IS_PYSTON, reason="Pyston disables recursion checking")
def test_object_array_circular_reference(self):
# Test the same for a circular reference.
a = np.array(0, dtype=object)
b = np.array(0, dtype=object)
a[()] = b
b[()] = a
assert_raises(RecursionError, int, a)
# NumPy has no tp_traverse currently, so circular references
# cannot be detected. So resolve it:
a[()] = None
# This was causing a to become like the above
a = np.array(0, dtype=object)
a[...] += 1
assert_equal(a, 1)
def test_object_array_nested(self):
# but is fine with a reference to a different array
a = np.array(0, dtype=object)
b = np.array(0, dtype=object)
a[()] = b
assert_equal(int(a), int(0))
assert_equal(float(a), float(0))
def test_object_array_self_copy(self):
# An object array being copied into itself DECREF'ed before INCREF'ing
# causing segmentation faults (gh-3787)
a = np.array(object(), dtype=object)
np.copyto(a, a)
if HAS_REFCOUNT:
assert_(sys.getrefcount(a[()]) == 2)
a[()].__class__ # will segfault if object was deleted
def test_zerosize_accumulate(self):
"Ticket #1733"
x = np.array([[42, 0]], dtype=np.uint32)
assert_equal(np.add.accumulate(x[:-1, 0]), [])
def test_objectarray_setfield(self):
# Setfield should not overwrite Object fields with non-Object data
x = np.array([1, 2, 3], dtype=object)
assert_raises(TypeError, x.setfield, 4, np.int32, 0)
def test_setting_rank0_string(self):
"Ticket #1736"
s1 = b"hello1"
s2 = b"hello2"
a = np.zeros((), dtype="S10")
a[()] = s1
assert_equal(a, np.array(s1))
a[()] = np.array(s2)
assert_equal(a, np.array(s2))
a = np.zeros((), dtype='f4')
a[()] = 3
assert_equal(a, np.array(3))
a[()] = np.array(4)
assert_equal(a, np.array(4))
def test_string_astype(self):
"Ticket #1748"
s1 = b'black'
s2 = b'white'
s3 = b'other'
a = np.array([[s1], [s2], [s3]])
assert_equal(a.dtype, np.dtype('S5'))
b = a.astype(np.dtype('S0'))
assert_equal(b.dtype, np.dtype('S5'))
def test_ticket_1756(self):
# Ticket #1756
s = b'0123456789abcdef'
a = np.array([s]*5)
for i in range(1, 17):
a1 = np.array(a, "|S%d" % i)
a2 = np.array([s[:i]]*5)
assert_equal(a1, a2)
def test_fields_strides(self):
"gh-2355"
r = np.frombuffer(b'abcdefghijklmnop'*4*3, dtype='i4,(2,3)u2')
assert_equal(r[0:3:2]['f1'], r['f1'][0:3:2])
assert_equal(r[0:3:2]['f1'][0], r[0:3:2][0]['f1'])
assert_equal(r[0:3:2]['f1'][0][()], r[0:3:2][0]['f1'][()])
assert_equal(r[0:3:2]['f1'][0].strides, r[0:3:2][0]['f1'].strides)
def test_alignment_update(self):
# Check that alignment flag is updated on stride setting
a = np.arange(10)
assert_(a.flags.aligned)
a.strides = 3
assert_(not a.flags.aligned)
def test_ticket_1770(self):
"Should not segfault on python 3k"
import numpy as np
try:
a = np.zeros((1,), dtype=[('f1', 'f')])
a['f1'] = 1
a['f2'] = 1
except ValueError:
pass
except Exception:
raise AssertionError
def test_ticket_1608(self):
"x.flat shouldn't modify data"
x = np.array([[1, 2], [3, 4]]).T
np.array(x.flat)
assert_equal(x, [[1, 3], [2, 4]])
def test_pickle_string_overwrite(self):
import re
data = np.array([1], dtype='b')
blob = pickle.dumps(data, protocol=1)
data = pickle.loads(blob)
# Check that loads does not clobber interned strings
s = re.sub("a(.)", "\x01\\1", "a_")
assert_equal(s[0], "\x01")
data[0] = 0xbb
s = re.sub("a(.)", "\x01\\1", "a_")
assert_equal(s[0], "\x01")
def test_pickle_bytes_overwrite(self):
for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
data = np.array([1], dtype='b')
data = pickle.loads(pickle.dumps(data, protocol=proto))
data[0] = 0xdd
bytestring = "\x01 ".encode('ascii')
assert_equal(bytestring[0:1], '\x01'.encode('ascii'))
def test_pickle_py2_array_latin1_hack(self):
# Check that unpickling hacks in Py3 that support
# encoding='latin1' work correctly.
# Python2 output for pickle.dumps(numpy.array([129], dtype='b'))
data = (b"cnumpy.core.multiarray\n_reconstruct\np0\n(cnumpy\nndarray\np1\n(I0\n"
b"tp2\nS'b'\np3\ntp4\nRp5\n(I1\n(I1\ntp6\ncnumpy\ndtype\np7\n(S'i1'\np8\n"
b"I0\nI1\ntp9\nRp10\n(I3\nS'|'\np11\nNNNI-1\nI-1\nI0\ntp12\nbI00\nS'\\x81'\n"
b"p13\ntp14\nb.")
# This should work:
result = pickle.loads(data, encoding='latin1')
assert_array_equal(result, np.array([129], dtype='b'))
# Should not segfault:
assert_raises(Exception, pickle.loads, data, encoding='koi8-r')
def test_pickle_py2_scalar_latin1_hack(self):
# Check that scalar unpickling hack in Py3 that supports
# encoding='latin1' work correctly.
# Python2 output for pickle.dumps(...)
datas = [
# (original, python2_pickle, koi8r_validity)
(np.unicode_('\u6bd2'),
(b"cnumpy.core.multiarray\nscalar\np0\n(cnumpy\ndtype\np1\n"
b"(S'U1'\np2\nI0\nI1\ntp3\nRp4\n(I3\nS'<'\np5\nNNNI4\nI4\nI0\n"
b"tp6\nbS'\\xd2k\\x00\\x00'\np7\ntp8\nRp9\n."),
'invalid'),
(np.float64(9e123),
(b"cnumpy.core.multiarray\nscalar\np0\n(cnumpy\ndtype\np1\n(S'f8'\n"
b"p2\nI0\nI1\ntp3\nRp4\n(I3\nS'<'\np5\nNNNI-1\nI-1\nI0\ntp6\n"
b"bS'O\\x81\\xb7Z\\xaa:\\xabY'\np7\ntp8\nRp9\n."),
'invalid'),
(np.bytes_(b'\x9c'), # different 8-bit code point in KOI8-R vs latin1
(b"cnumpy.core.multiarray\nscalar\np0\n(cnumpy\ndtype\np1\n(S'S1'\np2\n"
b"I0\nI1\ntp3\nRp4\n(I3\nS'|'\np5\nNNNI1\nI1\nI0\ntp6\nbS'\\x9c'\np7\n"
b"tp8\nRp9\n."),
'different'),
]
for original, data, koi8r_validity in datas:
result = pickle.loads(data, encoding='latin1')
assert_equal(result, original)
# Decoding under non-latin1 encoding (e.g.) KOI8-R can
# produce bad results, but should not segfault.
if koi8r_validity == 'different':
# Unicode code points happen to lie within latin1,
# but are different in koi8-r, resulting to silent
# bogus results
result = pickle.loads(data, encoding='koi8-r')
assert_(result != original)
elif koi8r_validity == 'invalid':
# Unicode code points outside latin1, so results
# to an encoding exception
assert_raises(ValueError, pickle.loads, data, encoding='koi8-r')
else:
raise ValueError(koi8r_validity)
def test_structured_type_to_object(self):
a_rec = np.array([(0, 1), (3, 2)], dtype='i4,i8')
a_obj = np.empty((2,), dtype=object)
a_obj[0] = (0, 1)
a_obj[1] = (3, 2)
# astype records -> object
assert_equal(a_rec.astype(object), a_obj)
# '=' records -> object
b = np.empty_like(a_obj)
b[...] = a_rec
assert_equal(b, a_obj)
# '=' object -> records
b = np.empty_like(a_rec)
b[...] = a_obj
assert_equal(b, a_rec)
def test_assign_obj_listoflists(self):
# Ticket # 1870
# The inner list should get assigned to the object elements
a = np.zeros(4, dtype=object)
b = a.copy()
a[0] = [1]
a[1] = [2]
a[2] = [3]
a[3] = [4]
b[...] = [[1], [2], [3], [4]]
assert_equal(a, b)
# The first dimension should get broadcast
a = np.zeros((2, 2), dtype=object)
a[...] = [[1, 2]]
assert_equal(a, [[1, 2], [1, 2]])
@pytest.mark.slow_pypy
def test_memoryleak(self):
# Ticket #1917 - ensure that array data doesn't leak
for i in range(1000):
# 100MB times 1000 would give 100GB of memory usage if it leaks
a = np.empty((100000000,), dtype='i1')
del a
@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
def test_ufunc_reduce_memoryleak(self):
a = np.arange(6)
acnt = sys.getrefcount(a)
np.add.reduce(a)
assert_equal(sys.getrefcount(a), acnt)
def test_search_sorted_invalid_arguments(self):
# Ticket #2021, should not segfault.
x = np.arange(0, 4, dtype='datetime64[D]')
assert_raises(TypeError, x.searchsorted, 1)
def test_string_truncation(self):
# Ticket #1990 - Data can be truncated in creation of an array from a
# mixed sequence of numeric values and strings (gh-2583)
for val in [True, 1234, 123.4, complex(1, 234)]:
for tostr, dtype in [(asunicode, "U"), (asbytes, "S")]:
b = np.array([val, tostr('xx')], dtype=dtype)
assert_equal(tostr(b[0]), tostr(val))
b = np.array([tostr('xx'), val], dtype=dtype)
assert_equal(tostr(b[1]), tostr(val))
# test also with longer strings
b = np.array([val, tostr('xxxxxxxxxx')], dtype=dtype)
assert_equal(tostr(b[0]), tostr(val))
b = np.array([tostr('xxxxxxxxxx'), val], dtype=dtype)
assert_equal(tostr(b[1]), tostr(val))
def test_string_truncation_ucs2(self):
# Ticket #2081. Python compiled with two byte unicode
# can lead to truncation if itemsize is not properly
# adjusted for NumPy's four byte unicode.
a = np.array(['abcd'])
assert_equal(a.dtype.itemsize, 16)
def test_unique_stable(self):
# Ticket #2063 must always choose stable sort for argsort to
# get consistent results
v = np.array(([0]*5 + [1]*6 + [2]*6)*4)
res = np.unique(v, return_index=True)
tgt = (np.array([0, 1, 2]), np.array([ 0, 5, 11]))
assert_equal(res, tgt)
def test_unicode_alloc_dealloc_match(self):
# Ticket #1578, the mismatch only showed up when running
# python-debug for python versions >= 2.7, and then as
# a core dump and error message.
a = np.array(['abc'], dtype=np.unicode_)[0]
del a
def test_refcount_error_in_clip(self):
# Ticket #1588
a = np.zeros((2,), dtype='>i2').clip(min=0)
x = a + a
# This used to segfault:
y = str(x)
# Check the final string:
assert_(y == "[0 0]")
def test_searchsorted_wrong_dtype(self):
# Ticket #2189, it used to segfault, so we check that it raises the
# proper exception.
a = np.array([('a', 1)], dtype='S1, int')
assert_raises(TypeError, np.searchsorted, a, 1.2)
# Ticket #2066, similar problem:
dtype = np.format_parser(['i4', 'i4'], [], [])
a = np.recarray((2,), dtype)
a[...] = [(1, 2), (3, 4)]
assert_raises(TypeError, np.searchsorted, a, 1)
def test_complex64_alignment(self):
# Issue gh-2668 (trac 2076), segfault on sparc due to misalignment
dtt = np.complex64
arr = np.arange(10, dtype=dtt)
# 2D array
arr2 = np.reshape(arr, (2, 5))
# Fortran write followed by (C or F) read caused bus error
data_str = arr2.tobytes('F')
data_back = np.ndarray(arr2.shape,
arr2.dtype,
buffer=data_str,
order='F')
assert_array_equal(arr2, data_back)
def test_structured_count_nonzero(self):
arr = np.array([0, 1]).astype('i4, (2)i4')[:1]
count = np.count_nonzero(arr)
assert_equal(count, 0)
def test_copymodule_preserves_f_contiguity(self):
a = np.empty((2, 2), order='F')
b = copy.copy(a)
c = copy.deepcopy(a)
assert_(b.flags.fortran)
assert_(b.flags.f_contiguous)
assert_(c.flags.fortran)
assert_(c.flags.f_contiguous)
def test_fortran_order_buffer(self):
import numpy as np
a = np.array([['Hello', 'Foob']], dtype='U5', order='F')
arr = np.ndarray(shape=[1, 2, 5], dtype='U1', buffer=a)
arr2 = np.array([[[u'H', u'e', u'l', u'l', u'o'],
[u'F', u'o', u'o', u'b', u'']]])
assert_array_equal(arr, arr2)
def test_assign_from_sequence_error(self):
# Ticket #4024.
arr = np.array([1, 2, 3])
assert_raises(ValueError, arr.__setitem__, slice(None), [9, 9])
arr.__setitem__(slice(None), [9])
assert_equal(arr, [9, 9, 9])
def test_format_on_flex_array_element(self):
# Ticket #4369.
dt = np.dtype([('date', '<M8[D]'), ('val', '<f8')])
arr = np.array([('2000-01-01', 1)], dt)
formatted = '{0}'.format(arr[0])
assert_equal(formatted, str(arr[0]))
def test_deepcopy_on_0d_array(self):
# Ticket #3311.
arr = np.array(3)
arr_cp = copy.deepcopy(arr)
assert_equal(arr, arr_cp)
assert_equal(arr.shape, arr_cp.shape)
assert_equal(int(arr), int(arr_cp))
assert_(arr is not arr_cp)
assert_(isinstance(arr_cp, type(arr)))
def test_deepcopy_F_order_object_array(self):
# Ticket #6456.
a = {'a': 1}
b = {'b': 2}
arr = np.array([[a, b], [a, b]], order='F')
arr_cp = copy.deepcopy(arr)
assert_equal(arr, arr_cp)
assert_(arr is not arr_cp)
# Ensure that we have actually copied the item.
assert_(arr[0, 1] is not arr_cp[1, 1])
# Ensure we are allowed to have references to the same object.
assert_(arr[0, 1] is arr[1, 1])
# Check the references hold for the copied objects.
assert_(arr_cp[0, 1] is arr_cp[1, 1])
def test_deepcopy_empty_object_array(self):
# Ticket #8536.
# Deepcopy should succeed
a = np.array([], dtype=object)
b = copy.deepcopy(a)
assert_(a.shape == b.shape)
def test_bool_subscript_crash(self):
# gh-4494
c = np.rec.array([(1, 2, 3), (4, 5, 6)])
masked = c[np.array([True, False])]
base = masked.base
del masked, c
base.dtype
def test_richcompare_crash(self):
# gh-4613
import operator as op
# dummy class where __array__ throws exception
class Foo:
__array_priority__ = 1002
def __array__(self, *args, **kwargs):
raise Exception()
rhs = Foo()
lhs = np.array(1)
for f in [op.lt, op.le, op.gt, op.ge]:
assert_raises(TypeError, f, lhs, rhs)
assert_(not op.eq(lhs, rhs))
assert_(op.ne(lhs, rhs))
def test_richcompare_scalar_and_subclass(self):
# gh-4709
class Foo(np.ndarray):
def __eq__(self, other):
return "OK"
x = np.array([1, 2, 3]).view(Foo)
assert_equal(10 == x, "OK")
assert_equal(np.int32(10) == x, "OK")
assert_equal(np.array([10]) == x, "OK")
def test_pickle_empty_string(self):
# gh-3926
for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
test_string = np.string_('')
assert_equal(pickle.loads(
pickle.dumps(test_string, protocol=proto)), test_string)
def test_frompyfunc_many_args(self):
# gh-5672
def passer(*args):
pass
assert_raises(ValueError, np.frompyfunc, passer, 32, 1)
def test_repeat_broadcasting(self):
# gh-5743
a = np.arange(60).reshape(3, 4, 5)
for axis in chain(range(-a.ndim, a.ndim), [None]):
assert_equal(a.repeat(2, axis=axis), a.repeat([2], axis=axis))
def test_frompyfunc_nout_0(self):
# gh-2014
def f(x):
x[0], x[-1] = x[-1], x[0]
uf = np.frompyfunc(f, 1, 0)
a = np.array([[1, 2, 3], [4, 5], [6, 7, 8, 9]], dtype=object)
assert_equal(uf(a), ())
expected = np.array([[3, 2, 1], [5, 4], [9, 7, 8, 6]], dtype=object)
assert_array_equal(a, expected)
@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
def test_leak_in_structured_dtype_comparison(self):
# gh-6250
recordtype = np.dtype([('a', np.float64),
('b', np.int32),
('d', (str, 5))])
# Simple case
a = np.zeros(2, dtype=recordtype)
for i in range(100):
a == a
assert_(sys.getrefcount(a) < 10)
# The case in the bug report.
before = sys.getrefcount(a)
u, v = a[0], a[1]
u == v
del u, v
gc.collect()
after = sys.getrefcount(a)
assert_equal(before, after)
def test_empty_percentile(self):
# gh-6530 / gh-6553
assert_array_equal(np.percentile(np.arange(10), []), np.array([]))
def test_void_compare_segfault(self):
# gh-6922. The following should not segfault
a = np.ones(3, dtype=[('object', 'O'), ('int', '<i2')])
a.sort()
def test_reshape_size_overflow(self):
# gh-7455
a = np.ones(20)[::2]
if np.dtype(np.intp).itemsize == 8:
# 64 bit. The following are the prime factors of 2**63 + 5,
# plus a leading 2, so when multiplied together as int64,
# the result overflows to a total size of 10.
new_shape = (2, 13, 419, 691, 823, 2977518503)
else:
# 32 bit. The following are the prime factors of 2**31 + 5,
# plus a leading 2, so when multiplied together as int32,
# the result overflows to a total size of 10.
new_shape = (2, 7, 7, 43826197)
assert_raises(ValueError, a.reshape, new_shape)
@pytest.mark.skipif(IS_PYPY and sys.implementation.version <= (7, 3, 8),
reason="PyPy bug in error formatting")
def test_invalid_structured_dtypes(self):
# gh-2865
# mapping python objects to other dtypes
assert_raises(ValueError, np.dtype, ('O', [('name', 'i8')]))
assert_raises(ValueError, np.dtype, ('i8', [('name', 'O')]))
assert_raises(ValueError, np.dtype,
('i8', [('name', [('name', 'O')])]))
assert_raises(ValueError, np.dtype, ([('a', 'i4'), ('b', 'i4')], 'O'))
assert_raises(ValueError, np.dtype, ('i8', 'O'))
# wrong number/type of tuple elements in dict
assert_raises(ValueError, np.dtype,
('i', {'name': ('i', 0, 'title', 'oops')}))
assert_raises(ValueError, np.dtype,
('i', {'name': ('i', 'wrongtype', 'title')}))
# disallowed as of 1.13
assert_raises(ValueError, np.dtype,
([('a', 'O'), ('b', 'O')], [('c', 'O'), ('d', 'O')]))
# allowed as a special case due to existing use, see gh-2798
a = np.ones(1, dtype=('O', [('name', 'O')]))
assert_equal(a[0], 1)
# In particular, the above union dtype (and union dtypes in general)
# should mainly behave like the main (object) dtype:
assert a[0] is a.item()
assert type(a[0]) is int
def test_correct_hash_dict(self):
# gh-8887 - __hash__ would be None despite tp_hash being set
all_types = set(np.sctypeDict.values()) - {np.void}
for t in all_types:
val = t()
try:
hash(val)
except TypeError as e:
assert_equal(t.__hash__, None)
else:
assert_(t.__hash__ != None)
def test_scalar_copy(self):
scalar_types = set(np.sctypeDict.values())
values = {
np.void: b"a",
np.bytes_: b"a",
np.unicode_: "a",
np.datetime64: "2017-08-25",
}
for sctype in scalar_types:
item = sctype(values.get(sctype, 1))
item2 = copy.copy(item)
assert_equal(item, item2)
def test_void_item_memview(self):
va = np.zeros(10, 'V4')
x = va[:1].item()
va[0] = b'\xff\xff\xff\xff'
del va
assert_equal(x, b'\x00\x00\x00\x00')
def test_void_getitem(self):
# Test fix for gh-11668.
assert_(np.array([b'a'], 'V1').astype('O') == b'a')
assert_(np.array([b'ab'], 'V2').astype('O') == b'ab')
assert_(np.array([b'abc'], 'V3').astype('O') == b'abc')
assert_(np.array([b'abcd'], 'V4').astype('O') == b'abcd')
def test_structarray_title(self):
# The following used to segfault on pypy, due to NPY_TITLE_KEY
# not working properly and resulting to double-decref of the
# structured array field items:
# See: https://bitbucket.org/pypy/pypy/issues/2789
for j in range(5):
structure = np.array([1], dtype=[(('x', 'X'), np.object_)])
structure[0]['x'] = np.array([2])
gc.collect()
def test_dtype_scalar_squeeze(self):
# gh-11384
values = {
'S': b"a",
'M': "2018-06-20",
}
for ch in np.typecodes['All']:
if ch in 'O':
continue
sctype = np.dtype(ch).type
scvalue = sctype(values.get(ch, 3))
for axis in [None, ()]:
squeezed = scvalue.squeeze(axis=axis)
assert_equal(squeezed, scvalue)
assert_equal(type(squeezed), type(scvalue))
def test_field_access_by_title(self):
# gh-11507
s = 'Some long field name'
if HAS_REFCOUNT:
base = sys.getrefcount(s)
t = np.dtype([((s, 'f1'), np.float64)])
data = np.zeros(10, t)
for i in range(10):
str(data[['f1']])
if HAS_REFCOUNT:
assert_(base <= sys.getrefcount(s))
@pytest.mark.parametrize('val', [
# arrays and scalars
np.ones((10, 10), dtype='int32'),
np.uint64(10),
])
@pytest.mark.parametrize('protocol',
range(2, pickle.HIGHEST_PROTOCOL + 1)
)
def test_pickle_module(self, protocol, val):
# gh-12837
s = pickle.dumps(val, protocol)
assert b'_multiarray_umath' not in s
if protocol == 5 and len(val.shape) > 0:
# unpickling ndarray goes through _frombuffer for protocol 5
assert b'numpy.core.numeric' in s
else:
assert b'numpy.core.multiarray' in s
def test_object_casting_errors(self):
# gh-11993 update to ValueError (see gh-16909), since strings can in
# principle be converted to complex, but this string cannot.
arr = np.array(['AAAAA', 18465886.0, 18465886.0], dtype=object)
assert_raises(ValueError, arr.astype, 'c8')
def test_eff1d_casting(self):
# gh-12711
x = np.array([1, 2, 4, 7, 0], dtype=np.int16)
res = np.ediff1d(x, to_begin=-99, to_end=np.array([88, 99]))
assert_equal(res, [-99, 1, 2, 3, -7, 88, 99])
# The use of safe casting means, that 1<<20 is cast unsafely, an
# error may be better, but currently there is no mechanism for it.
res = np.ediff1d(x, to_begin=(1<<20), to_end=(1<<20))
assert_equal(res, [0, 1, 2, 3, -7, 0])
def test_pickle_datetime64_array(self):
# gh-12745 (would fail with pickle5 installed)
d = np.datetime64('2015-07-04 12:59:59.50', 'ns')
arr = np.array([d])
for proto in range(2, pickle.HIGHEST_PROTOCOL + 1):
dumped = pickle.dumps(arr, protocol=proto)
assert_equal(pickle.loads(dumped), arr)
def test_bad_array_interface(self):
class T:
__array_interface__ = {}
with assert_raises(ValueError):
np.array([T()])
def test_2d__array__shape(self):
class T:
def __array__(self):
return np.ndarray(shape=(0,0))
# Make sure __array__ is used instead of Sequence methods.
def __iter__(self):
return iter([])
def __getitem__(self, idx):
raise AssertionError("__getitem__ was called")
def __len__(self):
return 0
t = T()
# gh-13659, would raise in broadcasting [x=t for x in result]
arr = np.array([t])
assert arr.shape == (1, 0, 0)
@pytest.mark.skipif(sys.maxsize < 2 ** 31 + 1, reason='overflows 32-bit python')
def test_to_ctypes(self):
#gh-14214
arr = np.zeros((2 ** 31 + 1,), 'b')
assert arr.size * arr.itemsize > 2 ** 31
c_arr = np.ctypeslib.as_ctypes(arr)
assert_equal(c_arr._length_, arr.size)
def test_complex_conversion_error(self):
# gh-17068
with pytest.raises(TypeError, match=r"Unable to convert dtype.*"):
complex(np.array("now", np.datetime64))
def test__array_interface__descr(self):
# gh-17068
dt = np.dtype(dict(names=['a', 'b'],
offsets=[0, 0],
formats=[np.int64, np.int64]))
descr = np.array((1, 1), dtype=dt).__array_interface__['descr']
assert descr == [('', '|V8')] # instead of [(b'', '|V8')]
@pytest.mark.skipif(sys.maxsize < 2 ** 31 + 1, reason='overflows 32-bit python')
@requires_memory(free_bytes=9e9)
def test_dot_big_stride(self):
# gh-17111
# blas stride = stride//itemsize > int32 max
int32_max = np.iinfo(np.int32).max
n = int32_max + 3
a = np.empty([n], dtype=np.float32)
b = a[::n-1]
b[...] = 1
assert b.strides[0] > int32_max * b.dtype.itemsize
assert np.dot(b, b) == 2.0
def test_frompyfunc_name(self):
# name conversion was failing for python 3 strings
# resulting in the default '?' name. Also test utf-8
# encoding using non-ascii name.
def cassé(x):
return x
f = np.frompyfunc(cassé, 1, 1)
assert str(f) == "<ufunc 'cassé (vectorized)'>"
@pytest.mark.parametrize("operation", [
'add', 'subtract', 'multiply', 'floor_divide',
'conjugate', 'fmod', 'square', 'reciprocal',
'power', 'absolute', 'negative', 'positive',
'greater', 'greater_equal', 'less',
'less_equal', 'equal', 'not_equal', 'logical_and',
'logical_not', 'logical_or', 'bitwise_and', 'bitwise_or',
'bitwise_xor', 'invert', 'left_shift', 'right_shift',
'gcd', 'lcm'
]
)
@pytest.mark.parametrize("order", [
('b->', 'B->'),
('h->', 'H->'),
('i->', 'I->'),
('l->', 'L->'),
('q->', 'Q->'),
]
)
def test_ufunc_order(self, operation, order):
# gh-18075
# Ensure signed types before unsigned
def get_idx(string, str_lst):
for i, s in enumerate(str_lst):
if string in s:
return i
raise ValueError(f"{string} not in list")
types = getattr(np, operation).types
assert get_idx(order[0], types) < get_idx(order[1], types), (
f"Unexpected types order of ufunc in {operation}"
f"for {order}. Possible fix: Use signed before unsigned"
"in generate_umath.py")