import numpy.polynomial as poly
from numpy.testing import assert_equal
class TestStr:
def test_polynomial_str(self):
res = str(poly.Polynomial([0, 1]))
tgt = 'poly([0. 1.])'
assert_equal(res, tgt)
def test_chebyshev_str(self):
res = str(poly.Chebyshev([0, 1]))
tgt = 'cheb([0. 1.])'
assert_equal(res, tgt)
def test_legendre_str(self):
res = str(poly.Legendre([0, 1]))
tgt = 'leg([0. 1.])'
assert_equal(res, tgt)
def test_hermite_str(self):
res = str(poly.Hermite([0, 1]))
tgt = 'herm([0. 1.])'
assert_equal(res, tgt)
def test_hermiteE_str(self):
res = str(poly.HermiteE([0, 1]))
tgt = 'herme([0. 1.])'
assert_equal(res, tgt)
def test_laguerre_str(self):
res = str(poly.Laguerre([0, 1]))
tgt = 'lag([0. 1.])'
assert_equal(res, tgt)
class TestRepr:
def test_polynomial_str(self):
res = repr(poly.Polynomial([0, 1]))
tgt = 'Polynomial([0., 1.], domain=[-1, 1], window=[-1, 1])'
assert_equal(res, tgt)
def test_chebyshev_str(self):
res = repr(poly.Chebyshev([0, 1]))
tgt = 'Chebyshev([0., 1.], domain=[-1, 1], window=[-1, 1])'
assert_equal(res, tgt)
def test_legendre_repr(self):
res = repr(poly.Legendre([0, 1]))
tgt = 'Legendre([0., 1.], domain=[-1, 1], window=[-1, 1])'
assert_equal(res, tgt)
def test_hermite_repr(self):
res = repr(poly.Hermite([0, 1]))
tgt = 'Hermite([0., 1.], domain=[-1, 1], window=[-1, 1])'
assert_equal(res, tgt)
def test_hermiteE_repr(self):
res = repr(poly.HermiteE([0, 1]))
tgt = 'HermiteE([0., 1.], domain=[-1, 1], window=[-1, 1])'
assert_equal(res, tgt)
def test_laguerre_repr(self):
res = repr(poly.Laguerre([0, 1]))
tgt = 'Laguerre([0., 1.], domain=[0, 1], window=[0, 1])'
assert_equal(res, tgt)
class TestLatexRepr:
"""Test the latex repr used by Jupyter"""
def as_latex(self, obj):
# right now we ignore the formatting of scalars in our tests, since
# it makes them too verbose. Ideally, the formatting of scalars will
# be fixed such that tests below continue to pass
obj._repr_latex_scalar = lambda x: str(x)
try:
return obj._repr_latex_()
finally:
del obj._repr_latex_scalar
def test_simple_polynomial(self):
# default input
p = poly.Polynomial([1, 2, 3])
assert_equal(self.as_latex(p),
r'$x \mapsto 1.0 + 2.0\,x + 3.0\,x^{2}$')
# translated input
p = poly.Polynomial([1, 2, 3], domain=[-2, 0])
assert_equal(self.as_latex(p),
r'$x \mapsto 1.0 + 2.0\,\left(1.0 + x\right) + 3.0\,\left(1.0 + x\right)^{2}$')
# scaled input
p = poly.Polynomial([1, 2, 3], domain=[-0.5, 0.5])
assert_equal(self.as_latex(p),
r'$x \mapsto 1.0 + 2.0\,\left(2.0x\right) + 3.0\,\left(2.0x\right)^{2}$')
# affine input
p = poly.Polynomial([1, 2, 3], domain=[-1, 0])
assert_equal(self.as_latex(p),
r'$x \mapsto 1.0 + 2.0\,\left(1.0 + 2.0x\right) + 3.0\,\left(1.0 + 2.0x\right)^{2}$')
def test_basis_func(self):
p = poly.Chebyshev([1, 2, 3])
assert_equal(self.as_latex(p),
r'$x \mapsto 1.0\,{T}_{0}(x) + 2.0\,{T}_{1}(x) + 3.0\,{T}_{2}(x)$')
# affine input - check no surplus parens are added
p = poly.Chebyshev([1, 2, 3], domain=[-1, 0])
assert_equal(self.as_latex(p),
r'$x \mapsto 1.0\,{T}_{0}(1.0 + 2.0x) + 2.0\,{T}_{1}(1.0 + 2.0x) + 3.0\,{T}_{2}(1.0 + 2.0x)$')
def test_multichar_basis_func(self):
p = poly.HermiteE([1, 2, 3])
assert_equal(self.as_latex(p),
r'$x \mapsto 1.0\,{He}_{0}(x) + 2.0\,{He}_{1}(x) + 3.0\,{He}_{2}(x)$')