from __future__ import division, absolute_import, print_function
import platform
import warnings
import fnmatch
import itertools
import pytest
from fractions import Fraction
import numpy.core.umath as ncu
from numpy.core import _umath_tests as ncu_tests
import numpy as np
from numpy.testing import (
assert_, assert_equal, assert_raises, assert_raises_regex,
assert_array_equal, assert_almost_equal, assert_array_almost_equal,
assert_array_max_ulp, assert_allclose, assert_no_warnings, suppress_warnings,
_gen_alignment_data, assert_array_almost_equal_nulp
)
def on_powerpc():
""" True if we are running on a Power PC platform."""
return platform.processor() == 'powerpc' or \
platform.machine().startswith('ppc')
class _FilterInvalids(object):
def setup(self):
self.olderr = np.seterr(invalid='ignore')
def teardown(self):
np.seterr(**self.olderr)
class TestConstants(object):
def test_pi(self):
assert_allclose(ncu.pi, 3.141592653589793, 1e-15)
def test_e(self):
assert_allclose(ncu.e, 2.718281828459045, 1e-15)
def test_euler_gamma(self):
assert_allclose(ncu.euler_gamma, 0.5772156649015329, 1e-15)
class TestOut(object):
def test_out_subok(self):
for subok in (True, False):
a = np.array(0.5)
o = np.empty(())
r = np.add(a, 2, o, subok=subok)
assert_(r is o)
r = np.add(a, 2, out=o, subok=subok)
assert_(r is o)
r = np.add(a, 2, out=(o,), subok=subok)
assert_(r is o)
d = np.array(5.7)
o1 = np.empty(())
o2 = np.empty((), dtype=np.int32)
r1, r2 = np.frexp(d, o1, None, subok=subok)
assert_(r1 is o1)
r1, r2 = np.frexp(d, None, o2, subok=subok)
assert_(r2 is o2)
r1, r2 = np.frexp(d, o1, o2, subok=subok)
assert_(r1 is o1)
assert_(r2 is o2)
r1, r2 = np.frexp(d, out=(o1, None), subok=subok)
assert_(r1 is o1)
r1, r2 = np.frexp(d, out=(None, o2), subok=subok)
assert_(r2 is o2)
r1, r2 = np.frexp(d, out=(o1, o2), subok=subok)
assert_(r1 is o1)
assert_(r2 is o2)
with assert_raises(TypeError):
# Out argument must be tuple, since there are multiple outputs.
r1, r2 = np.frexp(d, out=o1, subok=subok)
assert_raises(ValueError, np.add, a, 2, o, o, subok=subok)
assert_raises(ValueError, np.add, a, 2, o, out=o, subok=subok)
assert_raises(ValueError, np.add, a, 2, None, out=o, subok=subok)
assert_raises(ValueError, np.add, a, 2, out=(o, o), subok=subok)
assert_raises(ValueError, np.add, a, 2, out=(), subok=subok)
assert_raises(TypeError, np.add, a, 2, [], subok=subok)
assert_raises(TypeError, np.add, a, 2, out=[], subok=subok)
assert_raises(TypeError, np.add, a, 2, out=([],), subok=subok)
o.flags.writeable = False
assert_raises(ValueError, np.add, a, 2, o, subok=subok)
assert_raises(ValueError, np.add, a, 2, out=o, subok=subok)
assert_raises(ValueError, np.add, a, 2, out=(o,), subok=subok)
def test_out_wrap_subok(self):
class ArrayWrap(np.ndarray):
__array_priority__ = 10
def __new__(cls, arr):
return np.asarray(arr).view(cls).copy()
def __array_wrap__(self, arr, context):
return arr.view(type(self))
for subok in (True, False):
a = ArrayWrap([0.5])
r = np.add(a, 2, subok=subok)
if subok:
assert_(isinstance(r, ArrayWrap))
else:
assert_(type(r) == np.ndarray)
r = np.add(a, 2, None, subok=subok)
if subok:
assert_(isinstance(r, ArrayWrap))
else:
assert_(type(r) == np.ndarray)
r = np.add(a, 2, out=None, subok=subok)
if subok:
assert_(isinstance(r, ArrayWrap))
else:
assert_(type(r) == np.ndarray)
r = np.add(a, 2, out=(None,), subok=subok)
if subok:
assert_(isinstance(r, ArrayWrap))
else:
assert_(type(r) == np.ndarray)
d = ArrayWrap([5.7])
o1 = np.empty((1,))
o2 = np.empty((1,), dtype=np.int32)
r1, r2 = np.frexp(d, o1, subok=subok)
if subok:
assert_(isinstance(r2, ArrayWrap))
else:
assert_(type(r2) == np.ndarray)
r1, r2 = np.frexp(d, o1, None, subok=subok)
if subok:
assert_(isinstance(r2, ArrayWrap))
else:
assert_(type(r2) == np.ndarray)
r1, r2 = np.frexp(d, None, o2, subok=subok)
if subok:
assert_(isinstance(r1, ArrayWrap))
else:
assert_(type(r1) == np.ndarray)
r1, r2 = np.frexp(d, out=(o1, None), subok=subok)
if subok:
assert_(isinstance(r2, ArrayWrap))
else:
assert_(type(r2) == np.ndarray)
r1, r2 = np.frexp(d, out=(None, o2), subok=subok)
if subok:
assert_(isinstance(r1, ArrayWrap))
else:
assert_(type(r1) == np.ndarray)
with assert_raises(TypeError):
# Out argument must be tuple, since there are multiple outputs.
r1, r2 = np.frexp(d, out=o1, subok=subok)
class TestComparisons(object):
def test_ignore_object_identity_in_equal(self):
# Check comparing identical objects whose comparison
# is not a simple boolean, e.g., arrays that are compared elementwise.
a = np.array([np.array([1, 2, 3]), None], dtype=object)
assert_raises(ValueError, np.equal, a, a)
# Check error raised when comparing identical non-comparable objects.
class FunkyType(object):
def __eq__(self, other):
raise TypeError("I won't compare")
a = np.array([FunkyType()])
assert_raises(TypeError, np.equal, a, a)
# Check identity doesn't override comparison mismatch.
a = np.array([np.nan], dtype=object)
assert_equal(np.equal(a, a), [False])
def test_ignore_object_identity_in_not_equal(self):
# Check comparing identical objects whose comparison
# is not a simple boolean, e.g., arrays that are compared elementwise.
a = np.array([np.array([1, 2, 3]), None], dtype=object)
assert_raises(ValueError, np.not_equal, a, a)
# Check error raised when comparing identical non-comparable objects.
class FunkyType(object):
def __ne__(self, other):
raise TypeError("I won't compare")
a = np.array([FunkyType()])
assert_raises(TypeError, np.not_equal, a, a)
# Check identity doesn't override comparison mismatch.
a = np.array([np.nan], dtype=object)
assert_equal(np.not_equal(a, a), [True])
class TestAdd(object):
def test_reduce_alignment(self):
# gh-9876
# make sure arrays with weird strides work with the optimizations in
# pairwise_sum_@TYPE@. On x86, the 'b' field will count as aligned at a
# 4 byte offset, even though its itemsize is 8.
a = np.zeros(2, dtype=[('a', np.int32), ('b', np.float64)])
a['a'] = -1
assert_equal(a['b'].sum(), 0)
class TestDivision(object):
def test_division_int(self):
# int division should follow Python
x = np.array([5, 10, 90, 100, -5, -10, -90, -100, -120])
if 5 / 10 == 0.5:
assert_equal(x / 100, [0.05, 0.1, 0.9, 1,
-0.05, -0.1, -0.9, -1, -1.2])
else:
assert_equal(x / 100, [0, 0, 0, 1, -1, -1, -1, -1, -2])
assert_equal(x // 100, [0, 0, 0, 1, -1, -1, -1, -1, -2])
assert_equal(x % 100, [5, 10, 90, 0, 95, 90, 10, 0, 80])
def test_division_complex(self):
# check that implementation is correct
msg = "Complex division implementation check"
x = np.array([1. + 1.*1j, 1. + .5*1j, 1. + 2.*1j], dtype=np.complex128)
assert_almost_equal(x**2/x, x, err_msg=msg)
# check overflow, underflow
msg = "Complex division overflow/underflow check"
x = np.array([1.e+110, 1.e-110], dtype=np.complex128)
y = x**2/x
assert_almost_equal(y/x, [1, 1], err_msg=msg)
def test_zero_division_complex(self):
with np.errstate(invalid="ignore", divide="ignore"):
x = np.array([0.0], dtype=np.complex128)
y = 1.0/x
assert_(np.isinf(y)[0])
y = complex(np.inf, np.nan)/x
assert_(np.isinf(y)[0])
y = complex(np.nan, np.inf)/x
assert_(np.isinf(y)[0])
y = complex(np.inf, np.inf)/x
assert_(np.isinf(y)[0])
y = 0.0/x
assert_(np.isnan(y)[0])
def test_floor_division_complex(self):
# check that implementation is correct
msg = "Complex floor division implementation check"
x = np.array([.9 + 1j, -.1 + 1j, .9 + .5*1j, .9 + 2.*1j], dtype=np.complex128)
y = np.array([0., -1., 0., 0.], dtype=np.complex128)
assert_equal(np.floor_divide(x**2, x), y, err_msg=msg)
# check overflow, underflow
msg = "Complex floor division overflow/underflow check"
x = np.array([1.e+110, 1.e-110], dtype=np.complex128)
y = np.floor_divide(x**2, x)
assert_equal(y, [1.e+110, 0], err_msg=msg)
def test_floor_division_signed_zero(self):
# Check that the sign bit is correctly set when dividing positive and
# negative zero by one.
x = np.zeros(10)
assert_equal(np.signbit(x//1), 0)
assert_equal(np.signbit((-x)//1), 1)
def floor_divide_and_remainder(x, y):
return (np.floor_divide(x, y), np.remainder(x, y))
def _signs(dt):
if dt in np.typecodes['UnsignedInteger']:
return (+1,)
else:
return (+1, -1)
class TestRemainder(object):
def test_remainder_basic(self):
dt = np.typecodes['AllInteger'] + np.typecodes['Float']
for op in [floor_divide_and_remainder, np.divmod]:
for dt1, dt2 in itertools.product(dt, dt):
for sg1, sg2 in itertools.product(_signs(dt1), _signs(dt2)):
fmt = 'op: %s, dt1: %s, dt2: %s, sg1: %s, sg2: %s'
msg = fmt % (op.__name__, dt1, dt2, sg1, sg2)
a = np.array(sg1*71, dtype=dt1)
b = np.array(sg2*19, dtype=dt2)
div, rem = op(a, b)
assert_equal(div*b + rem, a, err_msg=msg)
if sg2 == -1:
assert_(b < rem <= 0, msg)
else:
assert_(b > rem >= 0, msg)
def test_float_remainder_exact(self):
# test that float results are exact for small integers. This also
# holds for the same integers scaled by powers of two.
nlst = list(range(-127, 0))
plst = list(range(1, 128))
dividend = nlst + [0] + plst
divisor = nlst + plst
arg = list(itertools.product(dividend, divisor))
tgt = list(divmod(*t) for t in arg)
a, b = np.array(arg, dtype=int).T
# convert exact integer results from Python to float so that
# signed zero can be used, it is checked.
tgtdiv, tgtrem = np.array(tgt, dtype=float).T
tgtdiv = np.where((tgtdiv == 0.0) & ((b < 0) ^ (a < 0)), -0.0, tgtdiv)
tgtrem = np.where((tgtrem == 0.0) & (b < 0), -0.0, tgtrem)
for op in [floor_divide_and_remainder, np.divmod]:
for dt in np.typecodes['Float']:
msg = 'op: %s, dtype: %s' % (op.__name__, dt)
fa = a.astype(dt)
fb = b.astype(dt)
div, rem = op(fa, fb)
assert_equal(div, tgtdiv, err_msg=msg)
assert_equal(rem, tgtrem, err_msg=msg)
def test_float_remainder_roundoff(self):
# gh-6127
dt = np.typecodes['Float']
for op in [floor_divide_and_remainder, np.divmod]:
for dt1, dt2 in itertools.product(dt, dt):
for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
fmt = 'op: %s, dt1: %s, dt2: %s, sg1: %s, sg2: %s'
msg = fmt % (op.__name__, dt1, dt2, sg1, sg2)
a = np.array(sg1*78*6e-8, dtype=dt1)
b = np.array(sg2*6e-8, dtype=dt2)
div, rem = op(a, b)
# Equal assertion should hold when fmod is used
assert_equal(div*b + rem, a, err_msg=msg)
if sg2 == -1:
assert_(b < rem <= 0, msg)
else:
assert_(b > rem >= 0, msg)
def test_float_remainder_corner_cases(self):
# Check remainder magnitude.
for dt in np.typecodes['Float']:
b = np.array(1.0, dtype=dt)
a = np.nextafter(np.array(0.0, dtype=dt), -b)
rem = np.remainder(a, b)
assert_(rem <= b, 'dt: %s' % dt)
rem = np.remainder(-a, -b)
assert_(rem >= -b, 'dt: %s' % dt)
# Check nans, inf
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, "invalid value encountered in remainder")
for dt in np.typecodes['Float']:
fone = np.array(1.0, dtype=dt)
fzer = np.array(0.0, dtype=dt)
finf = np.array(np.inf, dtype=dt)
fnan = np.array(np.nan, dtype=dt)
rem = np.remainder(fone, fzer)
assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
# MSVC 2008 returns NaN here, so disable the check.
#rem = np.remainder(fone, finf)
#assert_(rem == fone, 'dt: %s, rem: %s' % (dt, rem))
rem = np.remainder(fone, fnan)
assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
rem = np.remainder(finf, fone)
assert_(np.isnan(rem), 'dt: %s, rem: %s' % (dt, rem))
class TestCbrt(object):
def test_cbrt_scalar(self):
assert_almost_equal((np.cbrt(np.float32(-2.5)**3)), -2.5)
def test_cbrt(self):
x = np.array([1., 2., -3., np.inf, -np.inf])
assert_almost_equal(np.cbrt(x**3), x)
assert_(np.isnan(np.cbrt(np.nan)))
assert_equal(np.cbrt(np.inf), np.inf)
assert_equal(np.cbrt(-np.inf), -np.inf)
class TestPower(object):
def test_power_float(self):
x = np.array([1., 2., 3.])
assert_equal(x**0, [1., 1., 1.])
assert_equal(x**1, x)
assert_equal(x**2, [1., 4., 9.])
y = x.copy()
y **= 2
assert_equal(y, [1., 4., 9.])
assert_almost_equal(x**(-1), [1., 0.5, 1./3])
assert_almost_equal(x**(0.5), [1., ncu.sqrt(2), ncu.sqrt(3)])
for out, inp, msg in _gen_alignment_data(dtype=np.float32,
type='unary',
max_size=11):
exp = [ncu.sqrt(i) for i in inp]
assert_almost_equal(inp**(0.5), exp, err_msg=msg)
np.sqrt(inp, out=out)
assert_equal(out, exp, err_msg=msg)
for out, inp, msg in _gen_alignment_data(dtype=np.float64,
type='unary',
max_size=7):
exp = [ncu.sqrt(i) for i in inp]
assert_almost_equal(inp**(0.5), exp, err_msg=msg)
np.sqrt(inp, out=out)
assert_equal(out, exp, err_msg=msg)
def test_power_complex(self):
x = np.array([1+2j, 2+3j, 3+4j])
assert_equal(x**0, [1., 1., 1.])
assert_equal(x**1, x)
assert_almost_equal(x**2, [-3+4j, -5+12j, -7+24j])
assert_almost_equal(x**3, [(1+2j)**3, (2+3j)**3, (3+4j)**3])
assert_almost_equal(x**4, [(1+2j)**4, (2+3j)**4, (3+4j)**4])
assert_almost_equal(x**(-1), [1/(1+2j), 1/(2+3j), 1/(3+4j)])
assert_almost_equal(x**(-2), [1/(1+2j)**2, 1/(2+3j)**2, 1/(3+4j)**2])
assert_almost_equal(x**(-3), [(-11+2j)/125, (-46-9j)/2197,
(-117-44j)/15625])
assert_almost_equal(x**(0.5), [ncu.sqrt(1+2j), ncu.sqrt(2+3j),
ncu.sqrt(3+4j)])
norm = 1./((x**14)[0])
assert_almost_equal(x**14 * norm,
[i * norm for i in [-76443+16124j, 23161315+58317492j,
5583548873 + 2465133864j]])
# Ticket #836
def assert_complex_equal(x, y):
assert_array_equal(x.real, y.real)
assert_array_equal(x.imag, y.imag)
for z in [complex(0, np.inf), complex(1, np.inf)]:
z = np.array([z], dtype=np.complex_)
with np.errstate(invalid="ignore"):
assert_complex_equal(z**1, z)
assert_complex_equal(z**2, z*z)
assert_complex_equal(z**3, z*z*z)
def test_power_zero(self):
# ticket #1271
zero = np.array([0j])
one = np.array([1+0j])
cnan = np.array([complex(np.nan, np.nan)])
# FIXME cinf not tested.
#cinf = np.array([complex(np.inf, 0)])
def assert_complex_equal(x, y):
x, y = np.asarray(x), np.asarray(y)
assert_array_equal(x.real, y.real)
assert_array_equal(x.imag, y.imag)
# positive powers
for p in [0.33, 0.5, 1, 1.5, 2, 3, 4, 5, 6.6]:
assert_complex_equal(np.power(zero, p), zero)
# zero power
assert_complex_equal(np.power(zero, 0), one)
with np.errstate(invalid="ignore"):
assert_complex_equal(np.power(zero, 0+1j), cnan)
# negative power
for p in [0.33, 0.5, 1, 1.5, 2, 3, 4, 5, 6.6]:
assert_complex_equal(np.power(zero, -p), cnan)
assert_complex_equal(np.power(zero, -1+0.2j), cnan)
def test_fast_power(self):
x = np.array([1, 2, 3], np.int16)
res = x**2.0
assert_((x**2.00001).dtype is res.dtype)
assert_array_equal(res, [1, 4, 9])
# check the inplace operation on the casted copy doesn't mess with x
assert_(not np.may_share_memory(res, x))
assert_array_equal(x, [1, 2, 3])
# Check that the fast path ignores 1-element not 0-d arrays
res = x ** np.array([[[2]]])
assert_equal(res.shape, (1, 1, 3))
def test_integer_power(self):
a = np.array([15, 15], 'i8')
b = np.power(a, a)
assert_equal(b, [437893890380859375, 437893890380859375])
def test_integer_power_with_integer_zero_exponent(self):
dtypes = np.typecodes['Integer']
for dt in dtypes:
arr = np.arange(-10, 10, dtype=dt)
assert_equal(np.power(arr, 0), np.ones_like(arr))
dtypes = np.typecodes['UnsignedInteger']
for dt in dtypes:
arr = np.arange(10, dtype=dt)
assert_equal(np.power(arr, 0), np.ones_like(arr))
def test_integer_power_of_1(self):
dtypes = np.typecodes['AllInteger']
for dt in dtypes:
arr = np.arange(10, dtype=dt)
assert_equal(np.power(1, arr), np.ones_like(arr))
def test_integer_power_of_zero(self):
dtypes = np.typecodes['AllInteger']
for dt in dtypes:
arr = np.arange(1, 10, dtype=dt)
assert_equal(np.power(0, arr), np.zeros_like(arr))
def test_integer_to_negative_power(self):
dtypes = np.typecodes['Integer']
for dt in dtypes:
a = np.array([0, 1, 2, 3], dtype=dt)
b = np.array([0, 1, 2, -3], dtype=dt)
one = np.array(1, dtype=dt)
minusone = np.array(-1, dtype=dt)
assert_raises(ValueError, np.power, a, b)
assert_raises(ValueError, np.power, a, minusone)
assert_raises(ValueError, np.power, one, b)
assert_raises(ValueError, np.power, one, minusone)
class TestFloat_power(object):
def test_type_conversion(self):
arg_type = '?bhilBHILefdgFDG'
res_type = 'ddddddddddddgDDG'
for dtin, dtout in zip(arg_type, res_type):
msg = "dtin: %s, dtout: %s" % (dtin, dtout)
arg = np.ones(1, dtype=dtin)
res = np.float_power(arg, arg)
assert_(res.dtype.name == np.dtype(dtout).name, msg)
class TestLog2(object):
def test_log2_values(self):
x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
for dt in ['f', 'd', 'g']:
xf = np.array(x, dtype=dt)
yf = np.array(y, dtype=dt)
assert_almost_equal(np.log2(xf), yf)
def test_log2_ints(self):
# a good log2 implementation should provide this,
# might fail on OS with bad libm
for i in range(1, 65):
v = np.log2(2.**i)
assert_equal(v, float(i), err_msg='at exponent %d' % i)
def test_log2_special(self):
assert_equal(np.log2(1.), 0.)
assert_equal(np.log2(np.inf), np.inf)
assert_(np.isnan(np.log2(np.nan)))
with warnings.catch_warnings(record=True) as w:
warnings.filterwarnings('always', '', RuntimeWarning)
assert_(np.isnan(np.log2(-1.)))
assert_(np.isnan(np.log2(-np.inf)))
assert_equal(np.log2(0.), -np.inf)
assert_(w[0].category is RuntimeWarning)
assert_(w[1].category is RuntimeWarning)
assert_(w[2].category is RuntimeWarning)
class TestExp2(object):
def test_exp2_values(self):
x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
for dt in ['f', 'd', 'g']:
xf = np.array(x, dtype=dt)
yf = np.array(y, dtype=dt)
assert_almost_equal(np.exp2(yf), xf)
class TestLogAddExp2(_FilterInvalids):
# Need test for intermediate precisions
def test_logaddexp2_values(self):
x = [1, 2, 3, 4, 5]
y = [5, 4, 3, 2, 1]
z = [6, 6, 6, 6, 6]
for dt, dec_ in zip(['f', 'd', 'g'], [6, 15, 15]):
xf = np.log2(np.array(x, dtype=dt))
yf = np.log2(np.array(y, dtype=dt))
zf = np.log2(np.array(z, dtype=dt))
assert_almost_equal(np.logaddexp2(xf, yf), zf, decimal=dec_)
def test_logaddexp2_range(self):
x = [1000000, -1000000, 1000200, -1000200]
y = [1000200, -1000200, 1000000, -1000000]
z = [1000200, -1000000, 1000200, -1000000]
for dt in ['f', 'd', 'g']:
logxf = np.array(x, dtype=dt)
logyf = np.array(y, dtype=dt)
logzf = np.array(z, dtype=dt)
assert_almost_equal(np.logaddexp2(logxf, logyf), logzf)
def test_inf(self):
inf = np.inf
x = [inf, -inf, inf, -inf, inf, 1, -inf, 1]
y = [inf, inf, -inf, -inf, 1, inf, 1, -inf]
z = [inf, inf, inf, -inf, inf, inf, 1, 1]
with np.errstate(invalid='raise'):
for dt in ['f', 'd', 'g']:
logxf = np.array(x, dtype=dt)
logyf = np.array(y, dtype=dt)
logzf = np.array(z, dtype=dt)
assert_equal(np.logaddexp2(logxf, logyf), logzf)
def test_nan(self):
assert_(np.isnan(np.logaddexp2(np.nan, np.inf)))
assert_(np.isnan(np.logaddexp2(np.inf, np.nan)))
assert_(np.isnan(np.logaddexp2(np.nan, 0)))
assert_(np.isnan(np.logaddexp2(0, np.nan)))
assert_(np.isnan(np.logaddexp2(np.nan, np.nan)))
class TestLog(object):
def test_log_values(self):
x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
for dt in ['f', 'd', 'g']:
log2_ = 0.69314718055994530943
xf = np.array(x, dtype=dt)
yf = np.array(y, dtype=dt)*log2_
assert_almost_equal(np.log(xf), yf)
class TestExp(object):
def test_exp_values(self):
x = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024]
y = [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
for dt in ['f', 'd', 'g']:
log2_ = 0.69314718055994530943
xf = np.array(x, dtype=dt)
yf = np.array(y, dtype=dt)*log2_
assert_almost_equal(np.exp(yf), xf)
class TestSpecialFloats(object):
def test_exp_values(self):
x = [np.nan, np.nan, np.inf, 0.]
y = [np.nan, -np.nan, np.inf, -np.inf]
for dt in ['f', 'd', 'g']:
xf = np.array(x, dtype=dt)
yf = np.array(y, dtype=dt)
assert_equal(np.exp(yf), xf)
with np.errstate(over='raise'):
assert_raises(FloatingPointError, np.exp, np.float32(100.))
assert_raises(FloatingPointError, np.exp, np.float32(1E19))
def test_log_values(self):
with np.errstate(all='ignore'):
x = [np.nan, np.nan, np.inf, np.nan, -np.inf, np.nan]
y = [np.nan, -np.nan, np.inf, -np.inf, 0., -1.0]
for dt in ['f', 'd', 'g']:
xf = np.array(x, dtype=dt)
yf = np.array(y, dtype=dt)
assert_equal(np.log(yf), xf)
with np.errstate(divide='raise'):
assert_raises(FloatingPointError, np.log, np.float32(0.))
with np.errstate(invalid='raise'):
assert_raises(FloatingPointError, np.log, np.float32(-np.inf))
assert_raises(FloatingPointError, np.log, np.float32(-1.0))
def test_sincos_values(self):
with np.errstate(all='ignore'):
x = [np.nan, np.nan, np.nan, np.nan]
y = [np.nan, -np.nan, np.inf, -np.inf]
for dt in ['f', 'd', 'g']:
xf = np.array(x, dtype=dt)
yf = np.array(y, dtype=dt)
assert_equal(np.sin(yf), xf)
assert_equal(np.cos(yf), xf)
with np.errstate(invalid='raise'):
assert_raises(FloatingPointError, np.sin, np.float32(-np.inf))
assert_raises(FloatingPointError, np.sin, np.float32(np.inf))
assert_raises(FloatingPointError, np.cos, np.float32(-np.inf))
assert_raises(FloatingPointError, np.cos, np.float32(np.inf))
def test_sqrt_values(self):
with np.errstate(all='ignore'):
x = [np.nan, np.nan, np.inf, np.nan, 0.]
y = [np.nan, -np.nan, np.inf, -np.inf, 0.]
for dt in ['f', 'd', 'g']:
xf = np.array(x, dtype=dt)
yf = np.array(y, dtype=dt)
assert_equal(np.sqrt(yf), xf)
#with np.errstate(invalid='raise'):
# for dt in ['f', 'd', 'g']:
# assert_raises(FloatingPointError, np.sqrt, np.array(-100., dtype=dt))
def test_abs_values(self):
x = [np.nan, np.nan, np.inf, np.inf, 0., 0., 1.0, 1.0]
y = [np.nan, -np.nan, np.inf, -np.inf, 0., -0., -1.0, 1.0]
for dt in ['f', 'd', 'g']:
xf = np.array(x, dtype=dt)
yf = np.array(y, dtype=dt)
assert_equal(np.abs(yf), xf)
def test_square_values(self):
x = [np.nan, np.nan, np.inf, np.inf]
y = [np.nan, -np.nan, np.inf, -np.inf]
with np.errstate(all='ignore'):
for dt in ['f', 'd', 'g']:
xf = np.array(x, dtype=dt)
yf = np.array(y, dtype=dt)
assert_equal(np.square(yf), xf)
with np.errstate(over='raise'):
assert_raises(FloatingPointError, np.square, np.array(1E32, dtype='f'))
assert_raises(FloatingPointError, np.square, np.array(1E200, dtype='d'))
def test_reciprocal_values(self):
with np.errstate(all='ignore'):
x = [np.nan, np.nan, 0.0, -0.0, np.inf, -np.inf]
y = [np.nan, -np.nan, np.inf, -np.inf, 0., -0.]
for dt in ['f', 'd', 'g']:
xf = np.array(x, dtype=dt)
yf = np.array(y, dtype=dt)
assert_equal(np.reciprocal(yf), xf)
with np.errstate(divide='raise'):
for dt in ['f', 'd', 'g']:
assert_raises(FloatingPointError, np.reciprocal, np.array(-0.0, dtype=dt))
# func : [maxulperror, low, high]
avx_ufuncs = {'sqrt' :[1, 0., 100.],
'absolute' :[0, -100., 100.],
'reciprocal' :[1, 1., 100.],
'square' :[1, -100., 100.],
'rint' :[0, -100., 100.],
'floor' :[0, -100., 100.],
'ceil' :[0, -100., 100.],
'trunc' :[0, -100., 100.]}
class TestAVXUfuncs(object):
def test_avx_based_ufunc(self):
strides = np.array([-4,-3,-2,-1,1,2,3,4])
np.random.seed(42)
for func, prop in avx_ufuncs.items():
maxulperr = prop[0]
minval = prop[1]
maxval = prop[2]
# various array sizes to ensure masking in AVX is tested
for size in range(1,32):
myfunc = getattr(np, func)
x_f32 = np.float32(np.random.uniform(low=minval, high=maxval,
size=size))
x_f64 = np.float64(x_f32)
x_f128 = np.longdouble(x_f32)
y_true128 = myfunc(x_f128)
if maxulperr == 0:
assert_equal(myfunc(x_f32), np.float32(y_true128))
assert_equal(myfunc(x_f64), np.float64(y_true128))
else:
assert_array_max_ulp(myfunc(x_f32), np.float32(y_true128),
maxulp=maxulperr)
assert_array_max_ulp(myfunc(x_f64), np.float64(y_true128),
maxulp=maxulperr)
# various strides to test gather instruction
if size > 1:
y_true32 = myfunc(x_f32)
y_true64 = myfunc(x_f64)
for jj in strides:
assert_equal(myfunc(x_f64[::jj]), y_true64[::jj])
assert_equal(myfunc(x_f32[::jj]), y_true32[::jj])
class TestAVXFloat32Transcendental(object):
def test_exp_float32(self):
np.random.seed(42)
x_f32 = np.float32(np.random.uniform(low=0.0,high=88.1,size=1000000))
x_f64 = np.float64(x_f32)
assert_array_max_ulp(np.exp(x_f32), np.float32(np.exp(x_f64)), maxulp=3)
def test_log_float32(self):
np.random.seed(42)
x_f32 = np.float32(np.random.uniform(low=0.0,high=1000,size=1000000))
x_f64 = np.float64(x_f32)
assert_array_max_ulp(np.log(x_f32), np.float32(np.log(x_f64)), maxulp=4)
def test_sincos_float32(self):
np.random.seed(42)
N = 1000000
M = np.int_(N/20)
index = np.random.randint(low=0, high=N, size=M)
x_f32 = np.float32(np.random.uniform(low=-100.,high=100.,size=N))
# test coverage for elements > 117435.992f for which glibc is used
x_f32[index] = np.float32(10E+10*np.random.rand(M))
x_f64 = np.float64(x_f32)
assert_array_max_ulp(np.sin(x_f32), np.float32(np.sin(x_f64)), maxulp=2)
assert_array_max_ulp(np.cos(x_f32), np.float32(np.cos(x_f64)), maxulp=2)
def test_strided_float32(self):
np.random.seed(42)
strides = np.array([-4,-3,-2,-1,1,2,3,4])
sizes = np.arange(2,100)
for ii in sizes:
x_f32 = np.float32(np.random.uniform(low=0.01,high=88.1,size=ii))
exp_true = np.exp(x_f32)
log_true = np.log(x_f32)
sin_true = np.sin(x_f32)
cos_true = np.cos(x_f32)
for jj in strides:
assert_array_almost_equal_nulp(np.exp(x_f32[::jj]), exp_true[::jj], nulp=2)
assert_array_almost_equal_nulp(np.log(x_f32[::jj]), log_true[::jj], nulp=2)
assert_array_almost_equal_nulp(np.sin(x_f32[::jj]), sin_true[::jj], nulp=2)
assert_array_almost_equal_nulp(np.cos(x_f32[::jj]), cos_true[::jj], nulp=2)
class TestLogAddExp(_FilterInvalids):
def test_logaddexp_values(self):
x = [1, 2, 3, 4, 5]
y = [5, 4, 3, 2, 1]
z = [6, 6, 6, 6, 6]
for dt, dec_ in zip(['f', 'd', 'g'], [6, 15, 15]):
xf = np.log(np.array(x, dtype=dt))
yf = np.log(np.array(y, dtype=dt))
zf = np.log(np.array(z, dtype=dt))
assert_almost_equal(np.logaddexp(xf, yf), zf, decimal=dec_)
def test_logaddexp_range(self):
x = [1000000, -1000000, 1000200, -1000200]
y = [1000200, -1000200, 1000000, -1000000]
z = [1000200, -1000000, 1000200, -1000000]
for dt in ['f', 'd', 'g']:
logxf = np.array(x, dtype=dt)
logyf = np.array(y, dtype=dt)
logzf = np.array(z, dtype=dt)
assert_almost_equal(np.logaddexp(logxf, logyf), logzf)
def test_inf(self):
inf = np.inf
x = [inf, -inf, inf, -inf, inf, 1, -inf, 1]
y = [inf, inf, -inf, -inf, 1, inf, 1, -inf]
z = [inf, inf, inf, -inf, inf, inf, 1, 1]
with np.errstate(invalid='raise'):
for dt in ['f', 'd', 'g']:
logxf = np.array(x, dtype=dt)
logyf = np.array(y, dtype=dt)
logzf = np.array(z, dtype=dt)
assert_equal(np.logaddexp(logxf, logyf), logzf)
def test_nan(self):
assert_(np.isnan(np.logaddexp(np.nan, np.inf)))
assert_(np.isnan(np.logaddexp(np.inf, np.nan)))
assert_(np.isnan(np.logaddexp(np.nan, 0)))
assert_(np.isnan(np.logaddexp(0, np.nan)))
assert_(np.isnan(np.logaddexp(np.nan, np.nan)))
def test_reduce(self):
assert_equal(np.logaddexp.identity, -np.inf)
assert_equal(np.logaddexp.reduce([]), -np.inf)
class TestLog1p(object):
def test_log1p(self):
assert_almost_equal(ncu.log1p(0.2), ncu.log(1.2))
assert_almost_equal(ncu.log1p(1e-6), ncu.log(1+1e-6))
def test_special(self):
with np.errstate(invalid="ignore", divide="ignore"):
assert_equal(ncu.log1p(np.nan), np.nan)
assert_equal(ncu.log1p(np.inf), np.inf)
assert_equal(ncu.log1p(-1.), -np.inf)
assert_equal(ncu.log1p(-2.), np.nan)
assert_equal(ncu.log1p(-np.inf), np.nan)
class TestExpm1(object):
def test_expm1(self):
assert_almost_equal(ncu.expm1(0.2), ncu.exp(0.2)-1)
assert_almost_equal(ncu.expm1(1e-6), ncu.exp(1e-6)-1)
def test_special(self):
assert_equal(ncu.expm1(np.inf), np.inf)
assert_equal(ncu.expm1(0.), 0.)
assert_equal(ncu.expm1(-0.), -0.)
assert_equal(ncu.expm1(np.inf), np.inf)
assert_equal(ncu.expm1(-np.inf), -1.)
class TestHypot(object):
def test_simple(self):
assert_almost_equal(ncu.hypot(1, 1), ncu.sqrt(2))
assert_almost_equal(ncu.hypot(0, 0), 0)
def test_reduce(self):
assert_almost_equal(ncu.hypot.reduce([3.0, 4.0]), 5.0)
assert_almost_equal(ncu.hypot.reduce([3.0, 4.0, 0]), 5.0)
assert_almost_equal(ncu.hypot.reduce([9.0, 12.0, 20.0]), 25.0)
assert_equal(ncu.hypot.reduce([]), 0.0)
def assert_hypot_isnan(x, y):
with np.errstate(invalid='ignore'):
assert_(np.isnan(ncu.hypot(x, y)),
"hypot(%s, %s) is %s, not nan" % (x, y, ncu.hypot(x, y)))
def assert_hypot_isinf(x, y):
with np.errstate(invalid='ignore'):
assert_(np.isinf(ncu.hypot(x, y)),
"hypot(%s, %s) is %s, not inf" % (x, y, ncu.hypot(x, y)))
class TestHypotSpecialValues(object):
def test_nan_outputs(self):
assert_hypot_isnan(np.nan, np.nan)
assert_hypot_isnan(np.nan, 1)
def test_nan_outputs2(self):
assert_hypot_isinf(np.nan, np.inf)
assert_hypot_isinf(np.inf, np.nan)
assert_hypot_isinf(np.inf, 0)
assert_hypot_isinf(0, np.inf)
assert_hypot_isinf(np.inf, np.inf)
assert_hypot_isinf(np.inf, 23.0)
def test_no_fpe(self):
assert_no_warnings(ncu.hypot, np.inf, 0)
def assert_arctan2_isnan(x, y):
assert_(np.isnan(ncu.arctan2(x, y)), "arctan(%s, %s) is %s, not nan" % (x, y, ncu.arctan2(x, y)))
def assert_arctan2_ispinf(x, y):
assert_((np.isinf(ncu.arctan2(x, y)) and ncu.arctan2(x, y) > 0), "arctan(%s, %s) is %s, not +inf" % (x, y, ncu.arctan2(x, y)))
def assert_arctan2_isninf(x, y):
assert_((np.isinf(ncu.arctan2(x, y)) and ncu.arctan2(x, y) < 0), "arctan(%s, %s) is %s, not -inf" % (x, y, ncu.arctan2(x, y)))
def assert_arctan2_ispzero(x, y):
assert_((ncu.arctan2(x, y) == 0 and not np.signbit(ncu.arctan2(x, y))), "arctan(%s, %s) is %s, not +0" % (x, y, ncu.arctan2(x, y)))
def assert_arctan2_isnzero(x, y):
assert_((ncu.arctan2(x, y) == 0 and np.signbit(ncu.arctan2(x, y))), "arctan(%s, %s) is %s, not -0" % (x, y, ncu.arctan2(x, y)))
class TestArctan2SpecialValues(object):
def test_one_one(self):
# atan2(1, 1) returns pi/4.
assert_almost_equal(ncu.arctan2(1, 1), 0.25 * np.pi)
assert_almost_equal(ncu.arctan2(-1, 1), -0.25 * np.pi)
assert_almost_equal(ncu.arctan2(1, -1), 0.75 * np.pi)
def test_zero_nzero(self):
# atan2(+-0, -0) returns +-pi.
assert_almost_equal(ncu.arctan2(np.PZERO, np.NZERO), np.pi)
assert_almost_equal(ncu.arctan2(np.NZERO, np.NZERO), -np.pi)
def test_zero_pzero(self):
# atan2(+-0, +0) returns +-0.
assert_arctan2_ispzero(np.PZERO, np.PZERO)
assert_arctan2_isnzero(np.NZERO, np.PZERO)
def test_zero_negative(self):
# atan2(+-0, x) returns +-pi for x < 0.
assert_almost_equal(ncu.arctan2(np.PZERO, -1), np.pi)
assert_almost_equal(ncu.arctan2(np.NZERO, -1), -np.pi)
def test_zero_positive(self):
# atan2(+-0, x) returns +-0 for x > 0.
assert_arctan2_ispzero(np.PZERO, 1)
assert_arctan2_isnzero(np.NZERO, 1)
def test_positive_zero(self):
# atan2(y, +-0) returns +pi/2 for y > 0.
assert_almost_equal(ncu.arctan2(1, np.PZERO), 0.5 * np.pi)
assert_almost_equal(ncu.arctan2(1, np.NZERO), 0.5 * np.pi)
def test_negative_zero(self):
# atan2(y, +-0) returns -pi/2 for y < 0.
assert_almost_equal(ncu.arctan2(-1, np.PZERO), -0.5 * np.pi)
assert_almost_equal(ncu.arctan2(-1, np.NZERO), -0.5 * np.pi)
def test_any_ninf(self):
# atan2(+-y, -infinity) returns +-pi for finite y > 0.
assert_almost_equal(ncu.arctan2(1, np.NINF), np.pi)
assert_almost_equal(ncu.arctan2(-1, np.NINF), -np.pi)
def test_any_pinf(self):
# atan2(+-y, +infinity) returns +-0 for finite y > 0.
assert_arctan2_ispzero(1, np.inf)
assert_arctan2_isnzero(-1, np.inf)
def test_inf_any(self):
# atan2(+-infinity, x) returns +-pi/2 for finite x.
assert_almost_equal(ncu.arctan2( np.inf, 1), 0.5 * np.pi)
assert_almost_equal(ncu.arctan2(-np.inf, 1), -0.5 * np.pi)
def test_inf_ninf(self):
# atan2(+-infinity, -infinity) returns +-3*pi/4.
assert_almost_equal(ncu.arctan2( np.inf, -np.inf), 0.75 * np.pi)
assert_almost_equal(ncu.arctan2(-np.inf, -np.inf), -0.75 * np.pi)
def test_inf_pinf(self):
# atan2(+-infinity, +infinity) returns +-pi/4.
assert_almost_equal(ncu.arctan2( np.inf, np.inf), 0.25 * np.pi)
assert_almost_equal(ncu.arctan2(-np.inf, np.inf), -0.25 * np.pi)
def test_nan_any(self):
# atan2(nan, x) returns nan for any x, including inf
assert_arctan2_isnan(np.nan, np.inf)
assert_arctan2_isnan(np.inf, np.nan)
assert_arctan2_isnan(np.nan, np.nan)
class TestLdexp(object):
def _check_ldexp(self, tp):
assert_almost_equal(ncu.ldexp(np.array(2., np.float32),
np.array(3, tp)), 16.)
assert_almost_equal(ncu.ldexp(np.array(2., np.float64),
np.array(3, tp)), 16.)
assert_almost_equal(ncu.ldexp(np.array(2., np.longdouble),
np.array(3, tp)), 16.)
def test_ldexp(self):
# The default Python int type should work
assert_almost_equal(ncu.ldexp(2., 3), 16.)
# The following int types should all be accepted
self._check_ldexp(np.int8)
self._check_ldexp(np.int16)
self._check_ldexp(np.int32)
self._check_ldexp('i')
self._check_ldexp('l')
def test_ldexp_overflow(self):
# silence warning emitted on overflow
with np.errstate(over="ignore"):
imax = np.iinfo(np.dtype('l')).max
imin = np.iinfo(np.dtype('l')).min
assert_equal(ncu.ldexp(2., imax), np.inf)
assert_equal(ncu.ldexp(2., imin), 0)
class TestMaximum(_FilterInvalids):
def test_reduce(self):
dflt = np.typecodes['AllFloat']
dint = np.typecodes['AllInteger']
seq1 = np.arange(11)
seq2 = seq1[::-1]
func = np.maximum.reduce
for dt in dint:
tmp1 = seq1.astype(dt)
tmp2 = seq2.astype(dt)
assert_equal(func(tmp1), 10)
assert_equal(func(tmp2), 10)
for dt in dflt:
tmp1 = seq1.astype(dt)
tmp2 = seq2.astype(dt)
assert_equal(func(tmp1), 10)
assert_equal(func(tmp2), 10)
tmp1[::2] = np.nan
tmp2[::2] = np.nan
assert_equal(func(tmp1), np.nan)
assert_equal(func(tmp2), np.nan)
def test_reduce_complex(self):
assert_equal(np.maximum.reduce([1, 2j]), 1)
assert_equal(np.maximum.reduce([1+3j, 2j]), 1+3j)
def test_float_nans(self):
nan = np.nan
arg1 = np.array([0, nan, nan])
arg2 = np.array([nan, 0, nan])
out = np.array([nan, nan, nan])
assert_equal(np.maximum(arg1, arg2), out)
def test_object_nans(self):
# Multiple checks to give this a chance to
# fail if cmp is used instead of rich compare.
# Failure cannot be guaranteed.
for i in range(1):
x = np.array(float('nan'), object)
y = 1.0
z = np.array(float('nan'), object)
assert_(np.maximum(x, y) == 1.0)
assert_(np.maximum(z, y) == 1.0)
def test_complex_nans(self):
nan = np.nan
for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
arg1 = np.array([0, cnan, cnan], dtype=complex)
arg2 = np.array([cnan, 0, cnan], dtype=complex)
out = np.array([nan, nan, nan], dtype=complex)
assert_equal(np.maximum(arg1, arg2), out)
def test_object_array(self):
arg1 = np.arange(5, dtype=object)
arg2 = arg1 + 1
assert_equal(np.maximum(arg1, arg2), arg2)
class TestMinimum(_FilterInvalids):
def test_reduce(self):
dflt = np.typecodes['AllFloat']
dint = np.typecodes['AllInteger']
seq1 = np.arange(11)
seq2 = seq1[::-1]
func = np.minimum.reduce
for dt in dint:
tmp1 = seq1.astype(dt)
tmp2 = seq2.astype(dt)
assert_equal(func(tmp1), 0)
assert_equal(func(tmp2), 0)
for dt in dflt:
tmp1 = seq1.astype(dt)
tmp2 = seq2.astype(dt)
assert_equal(func(tmp1), 0)
assert_equal(func(tmp2), 0)
tmp1[::2] = np.nan
tmp2[::2] = np.nan
assert_equal(func(tmp1), np.nan)
assert_equal(func(tmp2), np.nan)
def test_reduce_complex(self):
assert_equal(np.minimum.reduce([1, 2j]), 2j)
assert_equal(np.minimum.reduce([1+3j, 2j]), 2j)
def test_float_nans(self):
nan = np.nan
arg1 = np.array([0, nan, nan])
arg2 = np.array([nan, 0, nan])
out = np.array([nan, nan, nan])
assert_equal(np.minimum(arg1, arg2), out)
def test_object_nans(self):
# Multiple checks to give this a chance to
# fail if cmp is used instead of rich compare.
# Failure cannot be guaranteed.
for i in range(1):
x = np.array(float('nan'), object)
y = 1.0
z = np.array(float('nan'), object)
assert_(np.minimum(x, y) == 1.0)
assert_(np.minimum(z, y) == 1.0)
def test_complex_nans(self):
nan = np.nan
for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
arg1 = np.array([0, cnan, cnan], dtype=complex)
arg2 = np.array([cnan, 0, cnan], dtype=complex)
out = np.array([nan, nan, nan], dtype=complex)
assert_equal(np.minimum(arg1, arg2), out)
def test_object_array(self):
arg1 = np.arange(5, dtype=object)
arg2 = arg1 + 1
assert_equal(np.minimum(arg1, arg2), arg1)
class TestFmax(_FilterInvalids):
def test_reduce(self):
dflt = np.typecodes['AllFloat']
dint = np.typecodes['AllInteger']
seq1 = np.arange(11)
seq2 = seq1[::-1]
func = np.fmax.reduce
for dt in dint:
tmp1 = seq1.astype(dt)
tmp2 = seq2.astype(dt)
assert_equal(func(tmp1), 10)
assert_equal(func(tmp2), 10)
for dt in dflt:
tmp1 = seq1.astype(dt)
tmp2 = seq2.astype(dt)
assert_equal(func(tmp1), 10)
assert_equal(func(tmp2), 10)
tmp1[::2] = np.nan
tmp2[::2] = np.nan
assert_equal(func(tmp1), 9)
assert_equal(func(tmp2), 9)
def test_reduce_complex(self):
assert_equal(np.fmax.reduce([1, 2j]), 1)
assert_equal(np.fmax.reduce([1+3j, 2j]), 1+3j)
def test_float_nans(self):
nan = np.nan
arg1 = np.array([0, nan, nan])
arg2 = np.array([nan, 0, nan])
out = np.array([0, 0, nan])
assert_equal(np.fmax(arg1, arg2), out)
def test_complex_nans(self):
nan = np.nan
for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
arg1 = np.array([0, cnan, cnan], dtype=complex)
arg2 = np.array([cnan, 0, cnan], dtype=complex)
out = np.array([0, 0, nan], dtype=complex)
assert_equal(np.fmax(arg1, arg2), out)
class TestFmin(_FilterInvalids):
def test_reduce(self):
dflt = np.typecodes['AllFloat']
dint = np.typecodes['AllInteger']
seq1 = np.arange(11)
seq2 = seq1[::-1]
func = np.fmin.reduce
for dt in dint:
tmp1 = seq1.astype(dt)
tmp2 = seq2.astype(dt)
assert_equal(func(tmp1), 0)
assert_equal(func(tmp2), 0)
for dt in dflt:
tmp1 = seq1.astype(dt)
tmp2 = seq2.astype(dt)
assert_equal(func(tmp1), 0)
assert_equal(func(tmp2), 0)
tmp1[::2] = np.nan
tmp2[::2] = np.nan
assert_equal(func(tmp1), 1)
assert_equal(func(tmp2), 1)
def test_reduce_complex(self):
assert_equal(np.fmin.reduce([1, 2j]), 2j)
assert_equal(np.fmin.reduce([1+3j, 2j]), 2j)
def test_float_nans(self):
nan = np.nan
arg1 = np.array([0, nan, nan])
arg2 = np.array([nan, 0, nan])
out = np.array([0, 0, nan])
assert_equal(np.fmin(arg1, arg2), out)
def test_complex_nans(self):
nan = np.nan
for cnan in [complex(nan, 0), complex(0, nan), complex(nan, nan)]:
arg1 = np.array([0, cnan, cnan], dtype=complex)
arg2 = np.array([cnan, 0, cnan], dtype=complex)
out = np.array([0, 0, nan], dtype=complex)
assert_equal(np.fmin(arg1, arg2), out)
class TestBool(object):
def test_exceptions(self):
a = np.ones(1, dtype=np.bool_)
assert_raises(TypeError, np.negative, a)
assert_raises(TypeError, np.positive, a)
assert_raises(TypeError, np.subtract, a, a)
def test_truth_table_logical(self):
# 2, 3 and 4 serves as true values
input1 = [0, 0, 3, 2]
input2 = [0, 4, 0, 2]
typecodes = (np.typecodes['AllFloat']
+ np.typecodes['AllInteger']
+ '?') # boolean
for dtype in map(np.dtype, typecodes):
arg1 = np.asarray(input1, dtype=dtype)
arg2 = np.asarray(input2, dtype=dtype)
# OR
out = [False, True, True, True]
for func in (np.logical_or, np.maximum):
assert_equal(func(arg1, arg2).astype(bool), out)
# AND
out = [False, False, False, True]
for func in (np.logical_and, np.minimum):
assert_equal(func(arg1, arg2).astype(bool), out)
# XOR
out = [False, True, True, False]
for func in (np.logical_xor, np.not_equal):
assert_equal(func(arg1, arg2).astype(bool), out)
def test_truth_table_bitwise(self):
arg1 = [False, False, True, True]
arg2 = [False, True, False, True]
out = [False, True, True, True]
assert_equal(np.bitwise_or(arg1, arg2), out)
out = [False, False, False, True]
assert_equal(np.bitwise_and(arg1, arg2), out)
out = [False, True, True, False]
assert_equal(np.bitwise_xor(arg1, arg2), out)
def test_reduce(self):
none = np.array([0, 0, 0, 0], bool)
some = np.array([1, 0, 1, 1], bool)
every = np.array([1, 1, 1, 1], bool)
empty = np.array([], bool)
arrs = [none, some, every, empty]
for arr in arrs:
assert_equal(np.logical_and.reduce(arr), all(arr))
for arr in arrs:
assert_equal(np.logical_or.reduce(arr), any(arr))
for arr in arrs:
assert_equal(np.logical_xor.reduce(arr), arr.sum() % 2 == 1)
class TestBitwiseUFuncs(object):
bitwise_types = [np.dtype(c) for c in '?' + 'bBhHiIlLqQ' + 'O']
def test_values(self):
for dt in self.bitwise_types:
zeros = np.array([0], dtype=dt)
ones = np.array([-1], dtype=dt)
msg = "dt = '%s'" % dt.char
assert_equal(np.bitwise_not(zeros), ones, err_msg=msg)
assert_equal(np.bitwise_not(ones), zeros, err_msg=msg)
assert_equal(np.bitwise_or(zeros, zeros), zeros, err_msg=msg)
assert_equal(np.bitwise_or(zeros, ones), ones, err_msg=msg)
assert_equal(np.bitwise_or(ones, zeros), ones, err_msg=msg)
assert_equal(np.bitwise_or(ones, ones), ones, err_msg=msg)
assert_equal(np.bitwise_xor(zeros, zeros), zeros, err_msg=msg)
assert_equal(np.bitwise_xor(zeros, ones), ones, err_msg=msg)
assert_equal(np.bitwise_xor(ones, zeros), ones, err_msg=msg)
assert_equal(np.bitwise_xor(ones, ones), zeros, err_msg=msg)
assert_equal(np.bitwise_and(zeros, zeros), zeros, err_msg=msg)
assert_equal(np.bitwise_and(zeros, ones), zeros, err_msg=msg)
assert_equal(np.bitwise_and(ones, zeros), zeros, err_msg=msg)
assert_equal(np.bitwise_and(ones, ones), ones, err_msg=msg)
def test_types(self):
for dt in self.bitwise_types:
zeros = np.array([0], dtype=dt)
ones = np.array([-1], dtype=dt)
msg = "dt = '%s'" % dt.char
assert_(np.bitwise_not(zeros).dtype == dt, msg)
assert_(np.bitwise_or(zeros, zeros).dtype == dt, msg)
assert_(np.bitwise_xor(zeros, zeros).dtype == dt, msg)
assert_(np.bitwise_and(zeros, zeros).dtype == dt, msg)
def test_identity(self):
assert_(np.bitwise_or.identity == 0, 'bitwise_or')
assert_(np.bitwise_xor.identity == 0, 'bitwise_xor')
assert_(np.bitwise_and.identity == -1, 'bitwise_and')
def test_reduction(self):
binary_funcs = (np.bitwise_or, np.bitwise_xor, np.bitwise_and)
for dt in self.bitwise_types:
zeros = np.array([0], dtype=dt)
ones = np.array([-1], dtype=dt)
for f in binary_funcs:
msg = "dt: '%s', f: '%s'" % (dt, f)
assert_equal(f.reduce(zeros), zeros, err_msg=msg)
assert_equal(f.reduce(ones), ones, err_msg=msg)
# Test empty reduction, no object dtype
for dt in self.bitwise_types[:-1]:
# No object array types
empty = np.array([], dtype=dt)
for f in binary_funcs:
msg = "dt: '%s', f: '%s'" % (dt, f)
tgt = np.array(f.identity, dtype=dt)
res = f.reduce(empty)
assert_equal(res, tgt, err_msg=msg)
assert_(res.dtype == tgt.dtype, msg)
# Empty object arrays use the identity. Note that the types may
# differ, the actual type used is determined by the assign_identity
# function and is not the same as the type returned by the identity
# method.
for f in binary_funcs:
msg = "dt: '%s'" % (f,)
empty = np.array([], dtype=object)
tgt = f.identity
res = f.reduce(empty)
assert_equal(res, tgt, err_msg=msg)
# Non-empty object arrays do not use the identity
for f in binary_funcs:
msg = "dt: '%s'" % (f,)
btype = np.array([True], dtype=object)
assert_(type(f.reduce(btype)) is bool, msg)
class TestInt(object):
def test_logical_not(self):
x = np.ones(10, dtype=np.int16)
o = np.ones(10 * 2, dtype=bool)
tgt = o.copy()
tgt[::2] = False
os = o[::2]
assert_array_equal(np.logical_not(x, out=os), False)
assert_array_equal(o, tgt)
class TestFloatingPoint(object):
def test_floating_point(self):
assert_equal(ncu.FLOATING_POINT_SUPPORT, 1)
class TestDegrees(object):
def test_degrees(self):
assert_almost_equal(ncu.degrees(np.pi), 180.0)
assert_almost_equal(ncu.degrees(-0.5*np.pi), -90.0)
class TestRadians(object):
def test_radians(self):
assert_almost_equal(ncu.radians(180.0), np.pi)
assert_almost_equal(ncu.radians(-90.0), -0.5*np.pi)
class TestHeavside(object):
def test_heaviside(self):
x = np.array([[-30.0, -0.1, 0.0, 0.2], [7.5, np.nan, np.inf, -np.inf]])
expectedhalf = np.array([[0.0, 0.0, 0.5, 1.0], [1.0, np.nan, 1.0, 0.0]])
expected1 = expectedhalf.copy()
expected1[0, 2] = 1
h = ncu.heaviside(x, 0.5)
assert_equal(h, expectedhalf)
h = ncu.heaviside(x, 1.0)
assert_equal(h, expected1)
x = x.astype(np.float32)
h = ncu.heaviside(x, np.float32(0.5))
assert_equal(h, expectedhalf.astype(np.float32))
h = ncu.heaviside(x, np.float32(1.0))
assert_equal(h, expected1.astype(np.float32))
class TestSign(object):
def test_sign(self):
a = np.array([np.inf, -np.inf, np.nan, 0.0, 3.0, -3.0])
out = np.zeros(a.shape)
tgt = np.array([1., -1., np.nan, 0.0, 1.0, -1.0])
with np.errstate(invalid='ignore'):
res = ncu.sign(a)
assert_equal(res, tgt)
res = ncu.sign(a, out)
assert_equal(res, tgt)
assert_equal(out, tgt)
def test_sign_dtype_object(self):
# In reference to github issue #6229
foo = np.array([-.1, 0, .1])
a = np.sign(foo.astype(object))
b = np.sign(foo)
assert_array_equal(a, b)
def test_sign_dtype_nan_object(self):
# In reference to github issue #6229
def test_nan():
foo = np.array([np.nan])
# FIXME: a not used
a = np.sign(foo.astype(object))
assert_raises(TypeError, test_nan)
class TestMinMax(object):
def test_minmax_blocked(self):
# simd tests on max/min, test all alignments, slow but important
# for 2 * vz + 2 * (vs - 1) + 1 (unrolled once)
for dt, sz in [(np.float32, 15), (np.float64, 7)]:
for out, inp, msg in _gen_alignment_data(dtype=dt, type='unary',
max_size=sz):
for i in range(inp.size):
inp[:] = np.arange(inp.size, dtype=dt)
inp[i] = np.nan
emsg = lambda: '%r\n%s' % (inp, msg)
with suppress_warnings() as sup:
sup.filter(RuntimeWarning,
"invalid value encountered in reduce")
assert_(np.isnan(inp.max()), msg=emsg)
assert_(np.isnan(inp.min()), msg=emsg)
inp[i] = 1e10
assert_equal(inp.max(), 1e10, err_msg=msg)
inp[i] = -1e10
assert_equal(inp.min(), -1e10, err_msg=msg)
def test_lower_align(self):
# check data that is not aligned to element size
# i.e doubles are aligned to 4 bytes on i386
d = np.zeros(23 * 8, dtype=np.int8)[4:-4].view(np.float64)
assert_equal(d.max(), d[0])
assert_equal(d.min(), d[0])
def test_reduce_reorder(self):
# gh 10370, 11029 Some compilers reorder the call to npy_getfloatstatus
# and put it before the call to an intrisic function that causes
# invalid status to be set. Also make sure warnings are not emitted
for n in (2, 4, 8, 16, 32):
for dt in (np.float32, np.float16, np.complex64):
for r in np.diagflat(np.array([np.nan] * n, dtype=dt)):
assert_equal(np.min(r), np.nan)
def test_minimize_no_warns(self):
a = np.minimum(np.nan, 1)
assert_equal(a, np.nan)
class TestAbsoluteNegative(object):
def test_abs_neg_blocked(self):
# simd tests on abs, test all alignments for vz + 2 * (vs - 1) + 1
for dt, sz in [(np.float32, 11), (np.float64, 5)]:
for out, inp, msg in _gen_alignment_data(dtype=dt, type='unary',
max_size=sz):
tgt = [ncu.absolute(i) for i in inp]
np.absolute(inp, out=out)
assert_equal(out, tgt, err_msg=msg)
assert_((out >= 0).all())
tgt = [-1*(i) for i in inp]
np.negative(inp, out=out)
assert_equal(out, tgt, err_msg=msg)
for v in [np.nan, -np.inf, np.inf]:
for i in range(inp.size):
d = np.arange(inp.size, dtype=dt)
inp[:] = -d
inp[i] = v
d[i] = -v if v == -np.inf else v
assert_array_equal(np.abs(inp), d, err_msg=msg)
np.abs(inp, out=out)
assert_array_equal(out, d, err_msg=msg)
assert_array_equal(-inp, -1*inp, err_msg=msg)
d = -1 * inp
np.negative(inp, out=out)
assert_array_equal(out, d, err_msg=msg)
def test_lower_align(self):
# check data that is not aligned to element size
# i.e doubles are aligned to 4 bytes on i386
d = np.zeros(23 * 8, dtype=np.int8)[4:-4].view(np.float64)
assert_equal(np.abs(d), d)
assert_equal(np.negative(d), -d)
np.negative(d, out=d)
np.negative(np.ones_like(d), out=d)
np.abs(d, out=d)
np.abs(np.ones_like(d), out=d)
class TestPositive(object):
def test_valid(self):
valid_dtypes = [int, float, complex, object]
for dtype in valid_dtypes:
x = np.arange(5, dtype=dtype)
result = np.positive(x)
assert_equal(x, result, err_msg=str(dtype))
def test_invalid(self):
with assert_raises(TypeError):
np.positive(True)
with assert_raises(TypeError):
np.positive(np.datetime64('2000-01-01'))
with assert_raises(TypeError):
np.positive(np.array(['foo'], dtype=str))
with assert_raises(TypeError):
np.positive(np.array(['bar'], dtype=object))
class TestSpecialMethods(object):
def test_wrap(self):
class with_wrap(object):
def __array__(self):
return np.zeros(1)
def __array_wrap__(self, arr, context):
r = with_wrap()
r.arr = arr
r.context = context
return r
a = with_wrap()
x = ncu.minimum(a, a)
assert_equal(x.arr, np.zeros(1))
func, args, i = x.context
assert_(func is ncu.minimum)
assert_equal(len(args), 2)
assert_equal(args[0], a)
assert_equal(args[1], a)
assert_equal(i, 0)
def test_wrap_and_prepare_out(self):
# Calling convention for out should not affect how special methods are
# called
class StoreArrayPrepareWrap(np.ndarray):
_wrap_args = None
_prepare_args = None
def __new__(cls):
return np.empty(()).view(cls)
def __array_wrap__(self, obj, context):
self._wrap_args = context[1]
return obj
def __array_prepare__(self, obj, context):
self._prepare_args = context[1]
return obj
@property
def args(self):
# We need to ensure these are fetched at the same time, before
# any other ufuncs are calld by the assertions
return (self._prepare_args, self._wrap_args)
def __repr__(self):
return "a" # for short test output
def do_test(f_call, f_expected):
a = StoreArrayPrepareWrap()
f_call(a)
p, w = a.args
expected = f_expected(a)
try:
assert_equal(p, expected)
assert_equal(w, expected)
except AssertionError as e:
# assert_equal produces truly useless error messages
raise AssertionError("\n".join([
"Bad arguments passed in ufunc call",
" expected: {}".format(expected),
" __array_prepare__ got: {}".format(p),
" __array_wrap__ got: {}".format(w)
]))
# method not on the out argument
do_test(lambda a: np.add(a, 0), lambda a: (a, 0))
do_test(lambda a: np.add(a, 0, None), lambda a: (a, 0))
do_test(lambda a: np.add(a, 0, out=None), lambda a: (a, 0))
do_test(lambda a: np.add(a, 0, out=(None,)), lambda a: (a, 0))
# method on the out argument
do_test(lambda a: np.add(0, 0, a), lambda a: (0, 0, a))
do_test(lambda a: np.add(0, 0, out=a), lambda a: (0, 0, a))
do_test(lambda a: np.add(0, 0, out=(a,)), lambda a: (0, 0, a))
def test_wrap_with_iterable(self):
# test fix for bug #1026:
class with_wrap(np.ndarray):
__array_priority__ = 10
def __new__(cls):
return np.asarray(1).view(cls).copy()
def __array_wrap__(self, arr, context):
return arr.view(type(self))
a = with_wrap()
x = ncu.multiply(a, (1, 2, 3))
assert_(isinstance(x, with_wrap))
assert_array_equal(x, np.array((1, 2, 3)))
def test_priority_with_scalar(self):
# test fix for bug #826:
class A(np.ndarray):
__array_priority__ = 10
def __new__(cls):
return np.asarray(1.0, 'float64').view(cls).copy()
a = A()
x = np.float64(1)*a
assert_(isinstance(x, A))
assert_array_equal(x, np.array(1))
def test_old_wrap(self):
class with_wrap(object):
def __array__(self):
return np.zeros(1)
def __array_wrap__(self, arr):
r = with_wrap()
r.arr = arr
return r
a = with_wrap()
x = ncu.minimum(a, a)
assert_equal(x.arr, np.zeros(1))
def test_priority(self):
class A(object):
def __array__(self):
return np.zeros(1)
def __array_wrap__(self, arr, context):
r = type(self)()
r.arr = arr
r.context = context
return r
class B(A):
__array_priority__ = 20.
class C(A):
__array_priority__ = 40.
x = np.zeros(1)
a = A()
b = B()
c = C()
f = ncu.minimum
assert_(type(f(x, x)) is np.ndarray)
assert_(type(f(x, a)) is A)
assert_(type(f(x, b)) is B)
assert_(type(f(x, c)) is C)
assert_(type(f(a, x)) is A)
assert_(type(f(b, x)) is B)
assert_(type(f(c, x)) is C)
assert_(type(f(a, a)) is A)
assert_(type(f(a, b)) is B)
assert_(type(f(b, a)) is B)
assert_(type(f(b, b)) is B)
assert_(type(f(b, c)) is C)
assert_(type(f(c, b)) is C)
assert_(type(f(c, c)) is C)
assert_(type(ncu.exp(a) is A))
assert_(type(ncu.exp(b) is B))
assert_(type(ncu.exp(c) is C))
def test_failing_wrap(self):
class A(object):
def __array__(self):
return np.zeros(2)
def __array_wrap__(self, arr, context):
raise RuntimeError
a = A()
assert_raises(RuntimeError, ncu.maximum, a, a)
assert_raises(RuntimeError, ncu.maximum.reduce, a)
def test_failing_out_wrap(self):
singleton = np.array([1.0])
class Ok(np.ndarray):
def __array_wrap__(self, obj):
return singleton
class Bad(np.ndarray):
def __array_wrap__(self, obj):
raise RuntimeError
ok = np.empty(1).view(Ok)
bad = np.empty(1).view(Bad)
# double-free (segfault) of "ok" if "bad" raises an exception
for i in range(10):
assert_raises(RuntimeError, ncu.frexp, 1, ok, bad)
def test_none_wrap(self):
# Tests that issue #8507 is resolved. Previously, this would segfault
class A(object):
def __array__(self):
return np.zeros(1)
def __array_wrap__(self, arr, context=None):
return None
a = A()
assert_equal(ncu.maximum(a, a), None)
def test_default_prepare(self):
class with_wrap(object):
__array_priority__ = 10
def __array__(self):
return np.zeros(1)
def __array_wrap__(self, arr, context):
return arr
a = with_wrap()
x = ncu.minimum(a, a)
assert_equal(x, np.zeros(1))
assert_equal(type(x), np.ndarray)
def test_prepare(self):
class with_prepare(np.ndarray):
__array_priority__ = 10
def __array_prepare__(self, arr, context):
# make sure we can return a new
return np.array(arr).view(type=with_prepare)
a = np.array(1).view(type=with_prepare)
x = np.add(a, a)
assert_equal(x, np.array(2))
assert_equal(type(x), with_prepare)
def test_prepare_out(self):
class with_prepare(np.ndarray):
__array_priority__ = 10
def __array_prepare__(self, arr, context):
return np.array(arr).view(type=with_prepare)
a = np.array([1]).view(type=with_prepare)
x = np.add(a, a, a)
# Returned array is new, because of the strange
# __array_prepare__ above
assert_(not np.shares_memory(x, a))
assert_equal(x, np.array([2]))
assert_equal(type(x), with_prepare)
def test_failing_prepare(self):
class A(object):
def __array__(self):
return np.zeros(1)
def __array_prepare__(self, arr, context=None):
raise RuntimeError
a = A()
assert_raises(RuntimeError, ncu.maximum, a, a)
def test_array_with_context(self):
class A(object):
def __array__(self, dtype=None, context=None):
func, args, i = context
self.func = func
self.args = args
self.i = i
return np.zeros(1)
class B(object):
def __array__(self, dtype=None):
return np.zeros(1, dtype)
class C(object):
def __array__(self):
return np.zeros(1)
a = A()
ncu.maximum(np.zeros(1), a)
assert_(a.func is ncu.maximum)
assert_equal(a.args[0], 0)
assert_(a.args[1] is a)
assert_(a.i == 1)
assert_equal(ncu.maximum(a, B()), 0)
assert_equal(ncu.maximum(a, C()), 0)
def test_ufunc_override(self):
# check override works even with instance with high priority.
class A(object):
def __array_ufunc__(self, func, method, *inputs, **kwargs):
return self, func, method, inputs, kwargs
class MyNDArray(np.ndarray):
__array_priority__ = 100
a = A()
b = np.array([1]).view(MyNDArray)
res0 = np.multiply(a, b)
res1 = np.multiply(b, b, out=a)
# self
assert_equal(res0[0], a)
assert_equal(res1[0], a)
assert_equal(res0[1], np.multiply)
assert_equal(res1[1], np.multiply)
assert_equal(res0[2], '__call__')
assert_equal(res1[2], '__call__')
assert_equal(res0[3], (a, b))
assert_equal(res1[3], (b, b))
assert_equal(res0[4], {})
assert_equal(res1[4], {'out': (a,)})
def test_ufunc_override_mro(self):
# Some multi arg functions for testing.
def tres_mul(a, b, c):
return a * b * c
def quatro_mul(a, b, c, d):
return a * b * c * d
# Make these into ufuncs.
three_mul_ufunc = np.frompyfunc(tres_mul, 3, 1)
four_mul_ufunc = np.frompyfunc(quatro_mul, 4, 1)
class A(object):
def __array_ufunc__(self, func, method, *inputs, **kwargs):
return "A"
class ASub(A):
def __array_ufunc__(self, func, method, *inputs, **kwargs):
return "ASub"
class B(object):
def __array_ufunc__(self, func, method, *inputs, **kwargs):
return "B"
class C(object):
def __init__(self):
self.count = 0
def __array_ufunc__(self, func, method, *inputs, **kwargs):
self.count += 1
return NotImplemented
class CSub(C):
def __array_ufunc__(self, func, method, *inputs, **kwargs):
self.count += 1
return NotImplemented
a = A()
a_sub = ASub()
b = B()
c = C()
# Standard
res = np.multiply(a, a_sub)
assert_equal(res, "ASub")
res = np.multiply(a_sub, b)
assert_equal(res, "ASub")
# With 1 NotImplemented
res = np.multiply(c, a)
assert_equal(res, "A")
assert_equal(c.count, 1)
# Check our counter works, so we can trust tests below.
res = np.multiply(c, a)
assert_equal(c.count, 2)
# Both NotImplemented.
c = C()
c_sub = CSub()
assert_raises(TypeError, np.multiply, c, c_sub)
assert_equal(c.count, 1)
assert_equal(c_sub.count, 1)
c.count = c_sub.count = 0
assert_raises(TypeError, np.multiply, c_sub, c)
assert_equal(c.count, 1)
assert_equal(c_sub.count, 1)
c.count = 0
assert_raises(TypeError, np.multiply, c, c)
assert_equal(c.count, 1)
c.count = 0
assert_raises(TypeError, np.multiply, 2, c)
assert_equal(c.count, 1)
# Ternary testing.
assert_equal(three_mul_ufunc(a, 1, 2), "A")
assert_equal(three_mul_ufunc(1, a, 2), "A")
assert_equal(three_mul_ufunc(1, 2, a), "A")
assert_equal(three_mul_ufunc(a, a, 6), "A")
assert_equal(three_mul_ufunc(a, 2, a), "A")
assert_equal(three_mul_ufunc(a, 2, b), "A")
assert_equal(three_mul_ufunc(a, 2, a_sub), "ASub")
assert_equal(three_mul_ufunc(a, a_sub, 3), "ASub")
c.count = 0
assert_equal(three_mul_ufunc(c, a_sub, 3), "ASub")
assert_equal(c.count, 1)
c.count = 0
assert_equal(three_mul_ufunc(1, a_sub, c), "ASub")
assert_equal(c.count, 0)
c.count = 0
assert_equal(three_mul_ufunc(a, b, c), "A")
assert_equal(c.count, 0)
c_sub.count = 0
assert_equal(three_mul_ufunc(a, b, c_sub), "A")
assert_equal(c_sub.count, 0)
assert_equal(three_mul_ufunc(1, 2, b), "B")
assert_raises(TypeError, three_mul_ufunc, 1, 2, c)
assert_raises(TypeError, three_mul_ufunc, c_sub, 2, c)
assert_raises(TypeError, three_mul_ufunc, c_sub, 2, 3)
# Quaternary testing.
assert_equal(four_mul_ufunc(a, 1, 2, 3), "A")
assert_equal(four_mul_ufunc(1, a, 2, 3), "A")
assert_equal(four_mul_ufunc(1, 1, a, 3), "A")
assert_equal(four_mul_ufunc(1, 1, 2, a), "A")
assert_equal(four_mul_ufunc(a, b, 2, 3), "A")
assert_equal(four_mul_ufunc(1, a, 2, b), "A")
assert_equal(four_mul_ufunc(b, 1, a, 3), "B")
assert_equal(four_mul_ufunc(a_sub, 1, 2, a), "ASub")
assert_equal(four_mul_ufunc(a, 1, 2, a_sub), "ASub")
c = C()
c_sub = CSub()
assert_raises(TypeError, four_mul_ufunc, 1, 2, 3, c)
assert_equal(c.count, 1)
c.count = 0
assert_raises(TypeError, four_mul_ufunc, 1, 2, c_sub, c)
assert_equal(c_sub.count, 1)
assert_equal(c.count, 1)
c2 = C()
c.count = c_sub.count = 0
assert_raises(TypeError, four_mul_ufunc, 1, c, c_sub, c2)
assert_equal(c_sub.count, 1)
assert_equal(c.count, 1)
assert_equal(c2.count, 0)
c.count = c2.count = c_sub.count = 0
assert_raises(TypeError, four_mul_ufunc, c2, c, c_sub, c)
assert_equal(c_sub.count, 1)
assert_equal(c.count, 0)
assert_equal(c2.count, 1)
def test_ufunc_override_methods(self):
class A(object):
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
return self, ufunc, method, inputs, kwargs
# __call__
a = A()
res = np.multiply.__call__(1, a, foo='bar', answer=42)
assert_equal(res[0], a)
assert_equal(res[1], np.multiply)
assert_equal(res[2], '__call__')
assert_equal(res[3], (1, a))
assert_equal(res[4], {'foo': 'bar', 'answer': 42})
# __call__, wrong args
assert_raises(TypeError, np.multiply, a)
assert_raises(TypeError, np.multiply, a, a, a, a)
assert_raises(TypeError, np.multiply, a, a, sig='a', signature='a')
assert_raises(TypeError, ncu_tests.inner1d, a, a, axis=0, axes=[0, 0])
# reduce, positional args
res = np.multiply.reduce(a, 'axis0', 'dtype0', 'out0', 'keep0')
assert_equal(res[0], a)
assert_equal(res[1], np.multiply)
assert_equal(res[2], 'reduce')
assert_equal(res[3], (a,))
assert_equal(res[4], {'dtype':'dtype0',
'out': ('out0',),
'keepdims': 'keep0',
'axis': 'axis0'})
# reduce, kwargs
res = np.multiply.reduce(a, axis='axis0', dtype='dtype0', out='out0',
keepdims='keep0', initial='init0',
where='where0')
assert_equal(res[0], a)
assert_equal(res[1], np.multiply)
assert_equal(res[2], 'reduce')
assert_equal(res[3], (a,))
assert_equal(res[4], {'dtype':'dtype0',
'out': ('out0',),
'keepdims': 'keep0',
'axis': 'axis0',
'initial': 'init0',
'where': 'where0'})
# reduce, output equal to None removed, but not other explicit ones,
# even if they are at their default value.
res = np.multiply.reduce(a, 0, None, None, False)
assert_equal(res[4], {'axis': 0, 'dtype': None, 'keepdims': False})
res = np.multiply.reduce(a, out=None, axis=0, keepdims=True)
assert_equal(res[4], {'axis': 0, 'keepdims': True})
res = np.multiply.reduce(a, None, out=(None,), dtype=None)
assert_equal(res[4], {'axis': None, 'dtype': None})
res = np.multiply.reduce(a, 0, None, None, False, 2, True)
assert_equal(res[4], {'axis': 0, 'dtype': None, 'keepdims': False,
'initial': 2, 'where': True})
# np._NoValue ignored for initial
res = np.multiply.reduce(a, 0, None, None, False,
np._NoValue, True)
assert_equal(res[4], {'axis': 0, 'dtype': None, 'keepdims': False,
'where': True})
# None kept for initial, True for where.
res = np.multiply.reduce(a, 0, None, None, False, None, True)
assert_equal(res[4], {'axis': 0, 'dtype': None, 'keepdims': False,
'initial': None, 'where': True})
# reduce, wrong args
assert_raises(ValueError, np.multiply.reduce, a, out=())
assert_raises(ValueError, np.multiply.reduce, a, out=('out0', 'out1'))
assert_raises(TypeError, np.multiply.reduce, a, 'axis0', axis='axis0')
# accumulate, pos args
res = np.multiply.accumulate(a, 'axis0', 'dtype0', 'out0')
assert_equal(res[0], a)
assert_equal(res[1], np.multiply)
assert_equal(res[2], 'accumulate')
assert_equal(res[3], (a,))
assert_equal(res[4], {'dtype':'dtype0',
'out': ('out0',),
'axis': 'axis0'})
# accumulate, kwargs
res = np.multiply.accumulate(a, axis='axis0', dtype='dtype0',
out='out0')
assert_equal(res[0], a)
assert_equal(res[1], np.multiply)
assert_equal(res[2], 'accumulate')
assert_equal(res[3], (a,))
assert_equal(res[4], {'dtype':'dtype0',
'out': ('out0',),
'axis': 'axis0'})
# accumulate, output equal to None removed.
res = np.multiply.accumulate(a, 0, None, None)
assert_equal(res[4], {'axis': 0, 'dtype': None})
res = np.multiply.accumulate(a, out=None, axis=0, dtype='dtype1')
assert_equal(res[4], {'axis': 0, 'dtype': 'dtype1'})
res = np.multiply.accumulate(a, None, out=(None,), dtype=None)
assert_equal(res[4], {'axis': None, 'dtype': None})
# accumulate, wrong args
assert_raises(ValueError, np.multiply.accumulate, a, out=())
assert_raises(ValueError, np.multiply.accumulate, a,
out=('out0', 'out1'))
assert_raises(TypeError, np.multiply.accumulate, a,
'axis0', axis='axis0')
# reduceat, pos args
res = np.multiply.reduceat(a, [4, 2], 'axis0', 'dtype0', 'out0')
assert_equal(res[0], a)
assert_equal(res[1], np.multiply)
assert_equal(res[2], 'reduceat')
assert_equal(res[3], (a, [4, 2]))
assert_equal(res[4], {'dtype':'dtype0',
'out': ('out0',),
'axis': 'axis0'})
# reduceat, kwargs
res = np.multiply.reduceat(a, [4, 2], axis='axis0', dtype='dtype0',
out='out0')
assert_equal(res[0], a)
assert_equal(res[1], np.multiply)
assert_equal(res[2], 'reduceat')
assert_equal(res[3], (a, [4, 2]))
assert_equal(res[4], {'dtype':'dtype0',
'out': ('out0',),
'axis': 'axis0'})
# reduceat, output equal to None removed.
res = np.multiply.reduceat(a, [4, 2], 0, None, None)
assert_equal(res[4], {'axis': 0, 'dtype': None})
res = np.multiply.reduceat(a, [4, 2], axis=None, out=None, dtype='dt')
assert_equal(res[4], {'axis': None, 'dtype': 'dt'})
res = np.multiply.reduceat(a, [4, 2], None, None, out=(None,))
assert_equal(res[4], {'axis': None, 'dtype': None})
# reduceat, wrong args
assert_raises(ValueError, np.multiply.reduce, a, [4, 2], out=())
assert_raises(ValueError, np.multiply.reduce, a, [4, 2],
out=('out0', 'out1'))
assert_raises(TypeError, np.multiply.reduce, a, [4, 2],
'axis0', axis='axis0')
# outer
res = np.multiply.outer(a, 42)
assert_equal(res[0], a)
assert_equal(res[1], np.multiply)
assert_equal(res[2], 'outer')
assert_equal(res[3], (a, 42))
assert_equal(res[4], {})
# outer, wrong args
assert_raises(TypeError, np.multiply.outer, a)
assert_raises(TypeError, np.multiply.outer, a, a, a, a)
assert_raises(TypeError, np.multiply.outer, a, a, sig='a', signature='a')
# at
res = np.multiply.at(a, [4, 2], 'b0')
assert_equal(res[0], a)
assert_equal(res[1], np.multiply)
assert_equal(res[2], 'at')
assert_equal(res[3], (a, [4, 2], 'b0'))
# at, wrong args
assert_raises(TypeError, np.multiply.at, a)
assert_raises(TypeError, np.multiply.at, a, a, a, a)
def test_ufunc_override_out(self):
class A(object):
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
return kwargs
class B(object):
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
return kwargs
a = A()
b = B()
res0 = np.multiply(a, b, 'out_arg')
res1 = np.multiply(a, b, out='out_arg')
res2 = np.multiply(2, b, 'out_arg')
res3 = np.multiply(3, b, out='out_arg')
res4 = np.multiply(a, 4, 'out_arg')
res5 = np.multiply(a, 5, out='out_arg')
assert_equal(res0['out'][0], 'out_arg')
assert_equal(res1['out'][0], 'out_arg')
assert_equal(res2['out'][0], 'out_arg')
assert_equal(res3['out'][0], 'out_arg')
assert_equal(res4['out'][0], 'out_arg')
assert_equal(res5['out'][0], 'out_arg')
# ufuncs with multiple output modf and frexp.
res6 = np.modf(a, 'out0', 'out1')
res7 = np.frexp(a, 'out0', 'out1')
assert_equal(res6['out'][0], 'out0')
assert_equal(res6['out'][1], 'out1')
assert_equal(res7['out'][0], 'out0')
assert_equal(res7['out'][1], 'out1')
# While we're at it, check that default output is never passed on.
assert_(np.sin(a, None) == {})
assert_(np.sin(a, out=None) == {})
assert_(np.sin(a, out=(None,)) == {})
assert_(np.modf(a, None) == {})
assert_(np.modf(a, None, None) == {})
assert_(np.modf(a, out=(None, None)) == {})
with assert_raises(TypeError):
# Out argument must be tuple, since there are multiple outputs.
np.modf(a, out=None)
# don't give positional and output argument, or too many arguments.
# wrong number of arguments in the tuple is an error too.
assert_raises(TypeError, np.multiply, a, b, 'one', out='two')
assert_raises(TypeError, np.multiply, a, b, 'one', 'two')
assert_raises(ValueError, np.multiply, a, b, out=('one', 'two'))
assert_raises(ValueError, np.multiply, a, out=())
assert_raises(TypeError, np.modf, a, 'one', out=('two', 'three'))
assert_raises(TypeError, np.modf, a, 'one', 'two', 'three')
assert_raises(ValueError, np.modf, a, out=('one', 'two', 'three'))
assert_raises(ValueError, np.modf, a, out=('one',))
def test_ufunc_override_exception(self):
class A(object):
def __array_ufunc__(self, *a, **kwargs):
raise ValueError("oops")
a = A()
assert_raises(ValueError, np.negative, 1, out=a)
assert_raises(ValueError, np.negative, a)
assert_raises(ValueError, np.divide, 1., a)
def test_ufunc_override_not_implemented(self):
class A(object):
def __array_ufunc__(self, *args, **kwargs):
return NotImplemented
msg = ("operand type(s) all returned NotImplemented from "
"__array_ufunc__(<ufunc 'negative'>, '__call__', <*>): 'A'")
with assert_raises_regex(TypeError, fnmatch.translate(msg)):
np.negative(A())
msg = ("operand type(s) all returned NotImplemented from "
"__array_ufunc__(<ufunc 'add'>, '__call__', <*>, <object *>, "
"out=(1,)): 'A', 'object', 'int'")
with assert_raises_regex(TypeError, fnmatch.translate(msg)):
np.add(A(), object(), out=1)
def test_ufunc_override_disabled(self):
class OptOut(object):
__array_ufunc__ = None
opt_out = OptOut()
# ufuncs always raise
msg = "operand 'OptOut' does not support ufuncs"
with assert_raises_regex(TypeError, msg):
np.add(opt_out, 1)
with assert_raises_regex(TypeError, msg):
np.add(1, opt_out)
with assert_raises_regex(TypeError, msg):
np.negative(opt_out)
# opt-outs still hold even when other arguments have pathological
# __array_ufunc__ implementations
class GreedyArray(object):
def __array_ufunc__(self, *args, **kwargs):
return self
greedy = GreedyArray()
assert_(np.negative(greedy) is greedy)
with assert_raises_regex(TypeError, msg):
np.add(greedy, opt_out)
with assert_raises_regex(TypeError, msg):
np.add(greedy, 1, out=opt_out)
def test_gufunc_override(self):
# gufunc are just ufunc instances, but follow a different path,
# so check __array_ufunc__ overrides them properly.
class A(object):
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
return self, ufunc, method, inputs, kwargs
inner1d = ncu_tests.inner1d
a = A()
res = inner1d(a, a)
assert_equal(res[0], a)
assert_equal(res[1], inner1d)
assert_equal(res[2], '__call__')
assert_equal(res[3], (a, a))
assert_equal(res[4], {})
res = inner1d(1, 1, out=a)
assert_equal(res[0], a)
assert_equal(res[1], inner1d)
assert_equal(res[2], '__call__')
assert_equal(res[3], (1, 1))
assert_equal(res[4], {'out': (a,)})
# wrong number of arguments in the tuple is an error too.
assert_raises(TypeError, inner1d, a, out='two')
assert_raises(TypeError, inner1d, a, a, 'one', out='two')
assert_raises(TypeError, inner1d, a, a, 'one', 'two')
assert_raises(ValueError, inner1d, a, a, out=('one', 'two'))
assert_raises(ValueError, inner1d, a, a, out=())
def test_ufunc_override_with_super(self):
# NOTE: this class is given as an example in doc/subclassing.py;
# if you make any changes here, do update it there too.
class A(np.ndarray):
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
args = []
in_no = []
for i, input_ in enumerate(inputs):
if isinstance(input_, A):
in_no.append(i)
args.append(input_.view(np.ndarray))
else:
args.append(input_)
outputs = kwargs.pop('out', None)
out_no = []
if outputs:
out_args = []
for j, output in enumerate(outputs):
if isinstance(output, A):
out_no.append(j)
out_args.append(output.view(np.ndarray))
else:
out_args.append(output)
kwargs['out'] = tuple(out_args)
else:
outputs = (None,) * ufunc.nout
info = {}
if in_no:
info['inputs'] = in_no
if out_no:
info['outputs'] = out_no
results = super(A, self).__array_ufunc__(ufunc, method,
*args, **kwargs)
if results is NotImplemented:
return NotImplemented
if method == 'at':
if isinstance(inputs[0], A):
inputs[0].info = info
return
if ufunc.nout == 1:
results = (results,)
results = tuple((np.asarray(result).view(A)
if output is None else output)
for result, output in zip(results, outputs))
if results and isinstance(results[0], A):
results[0].info = info
return results[0] if len(results) == 1 else results
class B(object):
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
if any(isinstance(input_, A) for input_ in inputs):
return "A!"
else:
return NotImplemented
d = np.arange(5.)
# 1 input, 1 output
a = np.arange(5.).view(A)
b = np.sin(a)
check = np.sin(d)
assert_(np.all(check == b))
assert_equal(b.info, {'inputs': [0]})
b = np.sin(d, out=(a,))
assert_(np.all(check == b))
assert_equal(b.info, {'outputs': [0]})
assert_(b is a)
a = np.arange(5.).view(A)
b = np.sin(a, out=a)
assert_(np.all(check == b))
assert_equal(b.info, {'inputs': [0], 'outputs': [0]})
# 1 input, 2 outputs
a = np.arange(5.).view(A)
b1, b2 = np.modf(a)
assert_equal(b1.info, {'inputs': [0]})
b1, b2 = np.modf(d, out=(None, a))
assert_(b2 is a)
assert_equal(b1.info, {'outputs': [1]})
a = np.arange(5.).view(A)
b = np.arange(5.).view(A)
c1, c2 = np.modf(a, out=(a, b))
assert_(c1 is a)
assert_(c2 is b)
assert_equal(c1.info, {'inputs': [0], 'outputs': [0, 1]})
# 2 input, 1 output
a = np.arange(5.).view(A)
b = np.arange(5.).view(A)
c = np.add(a, b, out=a)
assert_(c is a)
assert_equal(c.info, {'inputs': [0, 1], 'outputs': [0]})
# some tests with a non-ndarray subclass
a = np.arange(5.)
b = B()
assert_(a.__array_ufunc__(np.add, '__call__', a, b) is NotImplemented)
assert_(b.__array_ufunc__(np.add, '__call__', a, b) is NotImplemented)
assert_raises(TypeError, np.add, a, b)
a = a.view(A)
assert_(a.__array_ufunc__(np.add, '__call__', a, b) is NotImplemented)
assert_(b.__array_ufunc__(np.add, '__call__', a, b) == "A!")
assert_(np.add(a, b) == "A!")
# regression check for gh-9102 -- tests ufunc.reduce implicitly.
d = np.array([[1, 2, 3], [1, 2, 3]])
a = d.view(A)
c = a.any()
check = d.any()
assert_equal(c, check)
assert_(c.info, {'inputs': [0]})
c = a.max()
check = d.max()
assert_equal(c, check)
assert_(c.info, {'inputs': [0]})
b = np.array(0).view(A)
c = a.max(out=b)
assert_equal(c, check)
assert_(c is b)
assert_(c.info, {'inputs': [0], 'outputs': [0]})
check = a.max(axis=0)
b = np.zeros_like(check).view(A)
c = a.max(axis=0, out=b)
assert_equal(c, check)
assert_(c is b)
assert_(c.info, {'inputs': [0], 'outputs': [0]})
# simple explicit tests of reduce, accumulate, reduceat
check = np.add.reduce(d, axis=1)
c = np.add.reduce(a, axis=1)
assert_equal(c, check)
assert_(c.info, {'inputs': [0]})
b = np.zeros_like(c)
c = np.add.reduce(a, 1, None, b)
assert_equal(c, check)
assert_(c is b)
assert_(c.info, {'inputs': [0], 'outputs': [0]})
check = np.add.accumulate(d, axis=0)
c = np.add.accumulate(a, axis=0)
assert_equal(c, check)
assert_(c.info, {'inputs': [0]})
b = np.zeros_like(c)
c = np.add.accumulate(a, 0, None, b)
assert_equal(c, check)
assert_(c is b)
assert_(c.info, {'inputs': [0], 'outputs': [0]})
indices = [0, 2, 1]
check = np.add.reduceat(d, indices, axis=1)
c = np.add.reduceat(a, indices, axis=1)
assert_equal(c, check)
assert_(c.info, {'inputs': [0]})
b = np.zeros_like(c)
c = np.add.reduceat(a, indices, 1, None, b)
assert_equal(c, check)
assert_(c is b)
assert_(c.info, {'inputs': [0], 'outputs': [0]})
# and a few tests for at
d = np.array([[1, 2, 3], [1, 2, 3]])
check = d.copy()
a = d.copy().view(A)
np.add.at(check, ([0, 1], [0, 2]), 1.)
np.add.at(a, ([0, 1], [0, 2]), 1.)
assert_equal(a, check)
assert_(a.info, {'inputs': [0]})
b = np.array(1.).view(A)
a = d.copy().view(A)
np.add.at(a, ([0, 1], [0, 2]), b)
assert_equal(a, check)
assert_(a.info, {'inputs': [0, 2]})
class TestChoose(object):
def test_mixed(self):
c = np.array([True, True])
a = np.array([True, True])
assert_equal(np.choose(c, (a, 1)), np.array([1, 1]))
class TestRationalFunctions(object):
def test_lcm(self):
self._test_lcm_inner(np.int16)
self._test_lcm_inner(np.uint16)
def test_lcm_object(self):
self._test_lcm_inner(np.object_)
def test_gcd(self):
self._test_gcd_inner(np.int16)
self._test_lcm_inner(np.uint16)
def test_gcd_object(self):
self._test_gcd_inner(np.object_)
def _test_lcm_inner(self, dtype):
# basic use
a = np.array([12, 120], dtype=dtype)
b = np.array([20, 200], dtype=dtype)
assert_equal(np.lcm(a, b), [60, 600])
if not issubclass(dtype, np.unsignedinteger):
# negatives are ignored
a = np.array([12, -12, 12, -12], dtype=dtype)
b = np.array([20, 20, -20, -20], dtype=dtype)
assert_equal(np.lcm(a, b), [60]*4)
# reduce
a = np.array([3, 12, 20], dtype=dtype)
assert_equal(np.lcm.reduce([3, 12, 20]), 60)
# broadcasting, and a test including 0
a = np.arange(6).astype(dtype)
b = 20
assert_equal(np.lcm(a, b), [0, 20, 20, 60, 20, 20])
def _test_gcd_inner(self, dtype):
# basic use
a = np.array([12, 120], dtype=dtype)
b = np.array([20, 200], dtype=dtype)
assert_equal(np.gcd(a, b), [4, 40])
if not issubclass(dtype, np.unsignedinteger):
# negatives are ignored
a = np.array([12, -12, 12, -12], dtype=dtype)
b = np.array([20, 20, -20, -20], dtype=dtype)
assert_equal(np.gcd(a, b), [4]*4)
# reduce
a = np.array([15, 25, 35], dtype=dtype)
assert_equal(np.gcd.reduce(a), 5)
# broadcasting, and a test including 0
a = np.arange(6).astype(dtype)
b = 20
assert_equal(np.gcd(a, b), [20, 1, 2, 1, 4, 5])
def test_lcm_overflow(self):
# verify that we don't overflow when a*b does overflow
big = np.int32(np.iinfo(np.int32).max // 11)
a = 2*big
b = 5*big
assert_equal(np.lcm(a, b), 10*big)
def test_gcd_overflow(self):
for dtype in (np.int32, np.int64):
# verify that we don't overflow when taking abs(x)
# not relevant for lcm, where the result is unrepresentable anyway
a = dtype(np.iinfo(dtype).min) # negative power of two
q = -(a // 4)
assert_equal(np.gcd(a, q*3), q)
assert_equal(np.gcd(a, -q*3), q)
def test_decimal(self):
from decimal import Decimal
a = np.array([1, 1, -1, -1]) * Decimal('0.20')
b = np.array([1, -1, 1, -1]) * Decimal('0.12')
assert_equal(np.gcd(a, b), 4*[Decimal('0.04')])
assert_equal(np.lcm(a, b), 4*[Decimal('0.60')])
def test_float(self):
# not well-defined on float due to rounding errors
assert_raises(TypeError, np.gcd, 0.3, 0.4)
assert_raises(TypeError, np.lcm, 0.3, 0.4)
def test_builtin_long(self):
# sanity check that array coercion is alright for builtin longs
assert_equal(np.array(2**200).item(), 2**200)
# expressed as prime factors
a = np.array(2**100 * 3**5)
b = np.array([2**100 * 5**7, 2**50 * 3**10])
assert_equal(np.gcd(a, b), [2**100, 2**50 * 3**5])
assert_equal(np.lcm(a, b), [2**100 * 3**5 * 5**7, 2**100 * 3**10])
assert_equal(np.gcd(2**100, 3**100), 1)
class TestRoundingFunctions(object):
def test_object_direct(self):
""" test direct implementation of these magic methods """
class C:
def __floor__(self):
return 1
def __ceil__(self):
return 2
def __trunc__(self):
return 3
arr = np.array([C(), C()])
assert_equal(np.floor(arr), [1, 1])
assert_equal(np.ceil(arr), [2, 2])
assert_equal(np.trunc(arr), [3, 3])
def test_object_indirect(self):
""" test implementations via __float__ """
class C:
def __float__(self):
return -2.5
arr = np.array([C(), C()])
assert_equal(np.floor(arr), [-3, -3])
assert_equal(np.ceil(arr), [-2, -2])
with pytest.raises(TypeError):
np.trunc(arr) # consistent with math.trunc
def test_fraction(self):
f = Fraction(-4, 3)
assert_equal(np.floor(f), -2)
assert_equal(np.ceil(f), -1)
assert_equal(np.trunc(f), -1)
class TestComplexFunctions(object):
funcs = [np.arcsin, np.arccos, np.arctan, np.arcsinh, np.arccosh,
np.arctanh, np.sin, np.cos, np.tan, np.exp,
np.exp2, np.log, np.sqrt, np.log10, np.log2,
np.log1p]
def test_it(self):
for f in self.funcs:
if f is np.arccosh:
x = 1.5
else:
x = .5
fr = f(x)
fz = f(complex(x))
assert_almost_equal(fz.real, fr, err_msg='real part %s' % f)
assert_almost_equal(fz.imag, 0., err_msg='imag part %s' % f)
def test_precisions_consistent(self):
z = 1 + 1j
for f in self.funcs:
fcf = f(np.csingle(z))
fcd = f(np.cdouble(z))
fcl = f(np.clongdouble(z))
assert_almost_equal(fcf, fcd, decimal=6, err_msg='fch-fcd %s' % f)
assert_almost_equal(fcl, fcd, decimal=15, err_msg='fch-fcl %s' % f)
def test_branch_cuts(self):
# check branch cuts and continuity on them
_check_branch_cut(np.log, -0.5, 1j, 1, -1, True)
_check_branch_cut(np.log2, -0.5, 1j, 1, -1, True)
_check_branch_cut(np.log10, -0.5, 1j, 1, -1, True)
_check_branch_cut(np.log1p, -1.5, 1j, 1, -1, True)
_check_branch_cut(np.sqrt, -0.5, 1j, 1, -1, True)
_check_branch_cut(np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True)
_check_branch_cut(np.arccos, [ -2, 2], [1j, 1j], 1, -1, True)
_check_branch_cut(np.arctan, [0-2j, 2j], [1, 1], -1, 1, True)
_check_branch_cut(np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True)
_check_branch_cut(np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True)
_check_branch_cut(np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True)
# check against bogus branch cuts: assert continuity between quadrants
_check_branch_cut(np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1)
_check_branch_cut(np.arccos, [0-2j, 2j], [ 1, 1], 1, 1)
_check_branch_cut(np.arctan, [ -2, 2], [1j, 1j], 1, 1)
_check_branch_cut(np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1)
_check_branch_cut(np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1)
_check_branch_cut(np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1)
def test_branch_cuts_complex64(self):
# check branch cuts and continuity on them
_check_branch_cut(np.log, -0.5, 1j, 1, -1, True, np.complex64)
_check_branch_cut(np.log2, -0.5, 1j, 1, -1, True, np.complex64)
_check_branch_cut(np.log10, -0.5, 1j, 1, -1, True, np.complex64)
_check_branch_cut(np.log1p, -1.5, 1j, 1, -1, True, np.complex64)
_check_branch_cut(np.sqrt, -0.5, 1j, 1, -1, True, np.complex64)
_check_branch_cut(np.arcsin, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64)
_check_branch_cut(np.arccos, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64)
_check_branch_cut(np.arctan, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64)
_check_branch_cut(np.arcsinh, [0-2j, 2j], [1, 1], -1, 1, True, np.complex64)
_check_branch_cut(np.arccosh, [ -1, 0.5], [1j, 1j], 1, -1, True, np.complex64)
_check_branch_cut(np.arctanh, [ -2, 2], [1j, 1j], 1, -1, True, np.complex64)
# check against bogus branch cuts: assert continuity between quadrants
_check_branch_cut(np.arcsin, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64)
_check_branch_cut(np.arccos, [0-2j, 2j], [ 1, 1], 1, 1, False, np.complex64)
_check_branch_cut(np.arctan, [ -2, 2], [1j, 1j], 1, 1, False, np.complex64)
_check_branch_cut(np.arcsinh, [ -2, 2, 0], [1j, 1j, 1], 1, 1, False, np.complex64)
_check_branch_cut(np.arccosh, [0-2j, 2j, 2], [1, 1, 1j], 1, 1, False, np.complex64)
_check_branch_cut(np.arctanh, [0-2j, 2j, 0], [1, 1, 1j], 1, 1, False, np.complex64)
def test_against_cmath(self):
import cmath
points = [-1-1j, -1+1j, +1-1j, +1+1j]
name_map = {'arcsin': 'asin', 'arccos': 'acos', 'arctan': 'atan',
'arcsinh': 'asinh', 'arccosh': 'acosh', 'arctanh': 'atanh'}
atol = 4*np.finfo(complex).eps
for func in self.funcs:
fname = func.__name__.split('.')[-1]
cname = name_map.get(fname, fname)
try:
cfunc = getattr(cmath, cname)
except AttributeError:
continue
for p in points:
a = complex(func(np.complex_(p)))
b = cfunc(p)
assert_(abs(a - b) < atol, "%s %s: %s; cmath: %s" % (fname, p, a, b))
@pytest.mark.parametrize('dtype', [np.complex64, np.complex_, np.longcomplex])
def test_loss_of_precision(self, dtype):
"""Check loss of precision in complex arc* functions"""
# Check against known-good functions
info = np.finfo(dtype)
real_dtype = dtype(0.).real.dtype
eps = info.eps
def check(x, rtol):
x = x.astype(real_dtype)
z = x.astype(dtype)
d = np.absolute(np.arcsinh(x)/np.arcsinh(z).real - 1)
assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
'arcsinh'))
z = (1j*x).astype(dtype)
d = np.absolute(np.arcsinh(x)/np.arcsin(z).imag - 1)
assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
'arcsin'))
z = x.astype(dtype)
d = np.absolute(np.arctanh(x)/np.arctanh(z).real - 1)
assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
'arctanh'))
z = (1j*x).astype(dtype)
d = np.absolute(np.arctanh(x)/np.arctan(z).imag - 1)
assert_(np.all(d < rtol), (np.argmax(d), x[np.argmax(d)], d.max(),
'arctan'))
# The switchover was chosen as 1e-3; hence there can be up to
# ~eps/1e-3 of relative cancellation error before it
x_series = np.logspace(-20, -3.001, 200)
x_basic = np.logspace(-2.999, 0, 10, endpoint=False)
if dtype is np.longcomplex:
# It's not guaranteed that the system-provided arc functions
# are accurate down to a few epsilons. (Eg. on Linux 64-bit)
# So, give more leeway for long complex tests here:
# Can use 2.1 for > Ubuntu LTS Trusty (2014), glibc = 2.19.
check(x_series, 50.0*eps)
else:
check(x_series, 2.1*eps)
check(x_basic, 2.0*eps/1e-3)
# Check a few points
z = np.array([1e-5*(1+1j)], dtype=dtype)
p = 9.999999999333333333e-6 + 1.000000000066666666e-5j
d = np.absolute(1-np.arctanh(z)/p)
assert_(np.all(d < 1e-15))
p = 1.0000000000333333333e-5 + 9.999999999666666667e-6j
d = np.absolute(1-np.arcsinh(z)/p)
assert_(np.all(d < 1e-15))
p = 9.999999999333333333e-6j + 1.000000000066666666e-5
d = np.absolute(1-np.arctan(z)/p)
assert_(np.all(d < 1e-15))
p = 1.0000000000333333333e-5j + 9.999999999666666667e-6
d = np.absolute(1-np.arcsin(z)/p)
assert_(np.all(d < 1e-15))
# Check continuity across switchover points
def check(func, z0, d=1):
z0 = np.asarray(z0, dtype=dtype)
zp = z0 + abs(z0) * d * eps * 2
zm = z0 - abs(z0) * d * eps * 2
assert_(np.all(zp != zm), (zp, zm))
# NB: the cancellation error at the switchover is at least eps
good = (abs(func(zp) - func(zm)) < 2*eps)
assert_(np.all(good), (func, z0[~good]))
for func in (np.arcsinh, np.arcsinh, np.arcsin, np.arctanh, np.arctan):
pts = [rp+1j*ip for rp in (-1e-3, 0, 1e-3) for ip in(-1e-3, 0, 1e-3)
if rp != 0 or ip != 0]
check(func, pts, 1)
check(func, pts, 1j)
check(func, pts, 1+1j)
class TestAttributes(object):
def test_attributes(self):
add = ncu.add
assert_equal(add.__name__, 'add')
assert_(add.ntypes >= 18) # don't fail if types added
assert_('ii->i' in add.types)
assert_equal(add.nin, 2)
assert_equal(add.nout, 1)
assert_equal(add.identity, 0)
def test_doc(self):
# don't bother checking the long list of kwargs, which are likely to
# change
assert_(ncu.add.__doc__.startswith(
"add(x1, x2, /, out=None, *, where=True"))
assert_(ncu.frexp.__doc__.startswith(
"frexp(x[, out1, out2], / [, out=(None, None)], *, where=True"))
class TestSubclass(object):
def test_subclass_op(self):
class simple(np.ndarray):
def __new__(subtype, shape):
self = np.ndarray.__new__(subtype, shape, dtype=object)
self.fill(0)
return self
a = simple((3, 4))
assert_equal(a+a, a)
def _check_branch_cut(f, x0, dx, re_sign=1, im_sign=-1, sig_zero_ok=False,
dtype=complex):
"""
Check for a branch cut in a function.
Assert that `x0` lies on a branch cut of function `f` and `f` is
continuous from the direction `dx`.
Parameters
----------
f : func
Function to check
x0 : array-like
Point on branch cut
dx : array-like
Direction to check continuity in
re_sign, im_sign : {1, -1}
Change of sign of the real or imaginary part expected
sig_zero_ok : bool
Whether to check if the branch cut respects signed zero (if applicable)
dtype : dtype
Dtype to check (should be complex)
"""
x0 = np.atleast_1d(x0).astype(dtype)
dx = np.atleast_1d(dx).astype(dtype)
if np.dtype(dtype).char == 'F':
scale = np.finfo(dtype).eps * 1e2
atol = np.float32(1e-2)
else:
scale = np.finfo(dtype).eps * 1e3
atol = 1e-4
y0 = f(x0)
yp = f(x0 + dx*scale*np.absolute(x0)/np.absolute(dx))
ym = f(x0 - dx*scale*np.absolute(x0)/np.absolute(dx))
assert_(np.all(np.absolute(y0.real - yp.real) < atol), (y0, yp))
assert_(np.all(np.absolute(y0.imag - yp.imag) < atol), (y0, yp))
assert_(np.all(np.absolute(y0.real - ym.real*re_sign) < atol), (y0, ym))
assert_(np.all(np.absolute(y0.imag - ym.imag*im_sign) < atol), (y0, ym))
if sig_zero_ok:
# check that signed zeros also work as a displacement
jr = (x0.real == 0) & (dx.real != 0)
ji = (x0.imag == 0) & (dx.imag != 0)
if np.any(jr):
x = x0[jr]
x.real = np.NZERO
ym = f(x)
assert_(np.all(np.absolute(y0[jr].real - ym.real*re_sign) < atol), (y0[jr], ym))
assert_(np.all(np.absolute(y0[jr].imag - ym.imag*im_sign) < atol), (y0[jr], ym))
if np.any(ji):
x = x0[ji]
x.imag = np.NZERO
ym = f(x)
assert_(np.all(np.absolute(y0[ji].real - ym.real*re_sign) < atol), (y0[ji], ym))
assert_(np.all(np.absolute(y0[ji].imag - ym.imag*im_sign) < atol), (y0[ji], ym))
def test_copysign():
assert_(np.copysign(1, -1) == -1)
with np.errstate(divide="ignore"):
assert_(1 / np.copysign(0, -1) < 0)
assert_(1 / np.copysign(0, 1) > 0)
assert_(np.signbit(np.copysign(np.nan, -1)))
assert_(not np.signbit(np.copysign(np.nan, 1)))
def _test_nextafter(t):
one = t(1)
two = t(2)
zero = t(0)
eps = np.finfo(t).eps
assert_(np.nextafter(one, two) - one == eps)
assert_(np.nextafter(one, zero) - one < 0)
assert_(np.isnan(np.nextafter(np.nan, one)))
assert_(np.isnan(np.nextafter(one, np.nan)))
assert_(np.nextafter(one, one) == one)
def test_nextafter():
return _test_nextafter(np.float64)
def test_nextafterf():
return _test_nextafter(np.float32)
@pytest.mark.skipif(np.finfo(np.double) == np.finfo(np.longdouble),
reason="long double is same as double")
@pytest.mark.xfail(condition=platform.machine().startswith("ppc64"),
reason="IBM double double")
def test_nextafterl():
return _test_nextafter(np.longdouble)
def test_nextafter_0():
for t, direction in itertools.product(np.sctypes['float'], (1, -1)):
tiny = np.finfo(t).tiny
assert_(0. < direction * np.nextafter(t(0), t(direction)) < tiny)
assert_equal(np.nextafter(t(0), t(direction)) / t(2.1), direction * 0.0)
def _test_spacing(t):
one = t(1)
eps = np.finfo(t).eps
nan = t(np.nan)
inf = t(np.inf)
with np.errstate(invalid='ignore'):
assert_(np.spacing(one) == eps)
assert_(np.isnan(np.spacing(nan)))
assert_(np.isnan(np.spacing(inf)))
assert_(np.isnan(np.spacing(-inf)))
assert_(np.spacing(t(1e30)) != 0)
def test_spacing():
return _test_spacing(np.float64)
def test_spacingf():
return _test_spacing(np.float32)
@pytest.mark.skipif(np.finfo(np.double) == np.finfo(np.longdouble),
reason="long double is same as double")
@pytest.mark.xfail(condition=platform.machine().startswith("ppc64"),
reason="IBM double double")
def test_spacingl():
return _test_spacing(np.longdouble)
def test_spacing_gfortran():
# Reference from this fortran file, built with gfortran 4.3.3 on linux
# 32bits:
# PROGRAM test_spacing
# INTEGER, PARAMETER :: SGL = SELECTED_REAL_KIND(p=6, r=37)
# INTEGER, PARAMETER :: DBL = SELECTED_REAL_KIND(p=13, r=200)
#
# WRITE(*,*) spacing(0.00001_DBL)
# WRITE(*,*) spacing(1.0_DBL)
# WRITE(*,*) spacing(1000._DBL)
# WRITE(*,*) spacing(10500._DBL)
#
# WRITE(*,*) spacing(0.00001_SGL)
# WRITE(*,*) spacing(1.0_SGL)
# WRITE(*,*) spacing(1000._SGL)
# WRITE(*,*) spacing(10500._SGL)
# END PROGRAM
ref = {np.float64: [1.69406589450860068E-021,
2.22044604925031308E-016,
1.13686837721616030E-013,
1.81898940354585648E-012],
np.float32: [9.09494702E-13,
1.19209290E-07,
6.10351563E-05,
9.76562500E-04]}
for dt, dec_ in zip([np.float32, np.float64], (10, 20)):
x = np.array([1e-5, 1, 1000, 10500], dtype=dt)
assert_array_almost_equal(np.spacing(x), ref[dt], decimal=dec_)
def test_nextafter_vs_spacing():
# XXX: spacing does not handle long double yet
for t in [np.float32, np.float64]:
for _f in [1, 1e-5, 1000]:
f = t(_f)
f1 = t(_f + 1)
assert_(np.nextafter(f, f1) - f == np.spacing(f))
def test_pos_nan():
"""Check np.nan is a positive nan."""
assert_(np.signbit(np.nan) == 0)
def test_reduceat():
"""Test bug in reduceat when structured arrays are not copied."""
db = np.dtype([('name', 'S11'), ('time', np.int64), ('value', np.float32)])
a = np.empty([100], dtype=db)
a['name'] = 'Simple'
a['time'] = 10
a['value'] = 100
indx = [0, 7, 15, 25]
h2 = []
val1 = indx[0]
for val2 in indx[1:]:
h2.append(np.add.reduce(a['value'][val1:val2]))
val1 = val2
h2.append(np.add.reduce(a['value'][val1:]))
h2 = np.array(h2)
# test buffered -- this should work
h1 = np.add.reduceat(a['value'], indx)
assert_array_almost_equal(h1, h2)
# This is when the error occurs.
# test no buffer
np.setbufsize(32)
h1 = np.add.reduceat(a['value'], indx)
np.setbufsize(np.UFUNC_BUFSIZE_DEFAULT)
assert_array_almost_equal(h1, h2)
def test_reduceat_empty():
"""Reduceat should work with empty arrays"""
indices = np.array([], 'i4')
x = np.array([], 'f8')
result = np.add.reduceat(x, indices)
assert_equal(result.dtype, x.dtype)
assert_equal(result.shape, (0,))
# Another case with a slightly different zero-sized shape
x = np.ones((5, 2))
result = np.add.reduceat(x, [], axis=0)
assert_equal(result.dtype, x.dtype)
assert_equal(result.shape, (0, 2))
result = np.add.reduceat(x, [], axis=1)
assert_equal(result.dtype, x.dtype)
assert_equal(result.shape, (5, 0))
def test_complex_nan_comparisons():
nans = [complex(np.nan, 0), complex(0, np.nan), complex(np.nan, np.nan)]
fins = [complex(1, 0), complex(-1, 0), complex(0, 1), complex(0, -1),
complex(1, 1), complex(-1, -1), complex(0, 0)]
with np.errstate(invalid='ignore'):
for x in nans + fins:
x = np.array([x])
for y in nans + fins:
y = np.array([y])
if np.isfinite(x) and np.isfinite(y):
continue
assert_equal(x < y, False, err_msg="%r < %r" % (x, y))
assert_equal(x > y, False, err_msg="%r > %r" % (x, y))
assert_equal(x <= y, False, err_msg="%r <= %r" % (x, y))
assert_equal(x >= y, False, err_msg="%r >= %r" % (x, y))
assert_equal(x == y, False, err_msg="%r == %r" % (x, y))
def test_rint_big_int():
# np.rint bug for large integer values on Windows 32-bit and MKL
# https://github.com/numpy/numpy/issues/6685
val = 4607998452777363968
# This is exactly representable in floating point
assert_equal(val, int(float(val)))
# Rint should not change the value
assert_equal(val, np.rint(val))
def test_signaling_nan_exceptions():
with assert_no_warnings():
a = np.ndarray(shape=(), dtype='float32', buffer=b'\x00\xe0\xbf\xff')
np.isnan(a)
@pytest.mark.parametrize("arr", [
np.arange(2),
np.matrix([0, 1]),
np.matrix([[0, 1], [2, 5]]),
])
def test_outer_subclass_preserve(arr):
# for gh-8661
class foo(np.ndarray): pass
actual = np.multiply.outer(arr.view(foo), arr.view(foo))
assert actual.__class__.__name__ == 'foo'