""" Test functions for linalg module
"""
from __future__ import division, absolute_import, print_function
import os
import sys
import itertools
import traceback
import warnings
import numpy as np
from numpy import array, single, double, csingle, cdouble, dot, identity
from numpy import multiply, atleast_2d, inf, asarray, matrix
from numpy import linalg
from numpy.linalg import matrix_power, norm, matrix_rank, multi_dot, LinAlgError
from numpy.linalg.linalg import _multi_dot_matrix_chain_order
from numpy.testing import (
assert_, assert_equal, assert_raises, assert_array_equal,
assert_almost_equal, assert_allclose, run_module_suite,
dec, SkipTest, suppress_warnings
)
def ifthen(a, b):
return not a or b
def imply(a, b):
return not a or b
old_assert_almost_equal = assert_almost_equal
def assert_almost_equal(a, b, single_decimal=6, double_decimal=12, **kw):
if asarray(a).dtype.type in (single, csingle):
decimal = single_decimal
else:
decimal = double_decimal
old_assert_almost_equal(a, b, decimal=decimal, **kw)
def get_real_dtype(dtype):
return {single: single, double: double,
csingle: single, cdouble: double}[dtype]
def get_complex_dtype(dtype):
return {single: csingle, double: cdouble,
csingle: csingle, cdouble: cdouble}[dtype]
def get_rtol(dtype):
# Choose a safe rtol
if dtype in (single, csingle):
return 1e-5
else:
return 1e-11
# used to categorize tests
all_tags = {
'square', 'nonsquare', 'hermitian', # mutually exclusive
'generalized', 'size-0', 'strided' # optional additions
}
class LinalgCase(object):
def __init__(self, name, a, b, tags=set()):
"""
A bundle of arguments to be passed to a test case, with an identifying
name, the operands a and b, and a set of tags to filter the tests
"""
assert_(isinstance(name, str))
self.name = name
self.a = a
self.b = b
self.tags = frozenset(tags) # prevent shared tags
def check(self, do):
"""
Run the function `do` on this test case, expanding arguments
"""
do(self.a, self.b, tags=self.tags)
def __repr__(self):
return "<LinalgCase: %s>" % (self.name,)
def apply_tag(tag, cases):
"""
Add the given tag (a string) to each of the cases (a list of LinalgCase
objects)
"""
assert tag in all_tags, "Invalid tag"
for case in cases:
case.tags = case.tags | {tag}
return cases
#
# Base test cases
#
np.random.seed(1234)
CASES = []
# square test cases
CASES += apply_tag('square', [
LinalgCase("single",
array([[1., 2.], [3., 4.]], dtype=single),
array([2., 1.], dtype=single)),
LinalgCase("double",
array([[1., 2.], [3., 4.]], dtype=double),
array([2., 1.], dtype=double)),
LinalgCase("double_2",
array([[1., 2.], [3., 4.]], dtype=double),
array([[2., 1., 4.], [3., 4., 6.]], dtype=double)),
LinalgCase("csingle",
array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=csingle),
array([2. + 1j, 1. + 2j], dtype=csingle)),
LinalgCase("cdouble",
array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=cdouble),
array([2. + 1j, 1. + 2j], dtype=cdouble)),
LinalgCase("cdouble_2",
array([[1. + 2j, 2 + 3j], [3 + 4j, 4 + 5j]], dtype=cdouble),
array([[2. + 1j, 1. + 2j, 1 + 3j], [1 - 2j, 1 - 3j, 1 - 6j]], dtype=cdouble)),
LinalgCase("0x0",
np.empty((0, 0), dtype=double),
np.empty((0,), dtype=double),
tags={'size-0'}),
LinalgCase("0x0_matrix",
np.empty((0, 0), dtype=double).view(np.matrix),
np.empty((0, 1), dtype=double).view(np.matrix),
tags={'size-0'}),
LinalgCase("8x8",
np.random.rand(8, 8),
np.random.rand(8)),
LinalgCase("1x1",
np.random.rand(1, 1),
np.random.rand(1)),
LinalgCase("nonarray",
[[1, 2], [3, 4]],
[2, 1]),
LinalgCase("matrix_b_only",
array([[1., 2.], [3., 4.]]),
matrix([2., 1.]).T),
LinalgCase("matrix_a_and_b",
matrix([[1., 2.], [3., 4.]]),
matrix([2., 1.]).T),
])
# non-square test-cases
CASES += apply_tag('nonsquare', [
LinalgCase("single_nsq_1",
array([[1., 2., 3.], [3., 4., 6.]], dtype=single),
array([2., 1.], dtype=single)),
LinalgCase("single_nsq_2",
array([[1., 2.], [3., 4.], [5., 6.]], dtype=single),
array([2., 1., 3.], dtype=single)),
LinalgCase("double_nsq_1",
array([[1., 2., 3.], [3., 4., 6.]], dtype=double),
array([2., 1.], dtype=double)),
LinalgCase("double_nsq_2",
array([[1., 2.], [3., 4.], [5., 6.]], dtype=double),
array([2., 1., 3.], dtype=double)),
LinalgCase("csingle_nsq_1",
array(
[[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=csingle),
array([2. + 1j, 1. + 2j], dtype=csingle)),
LinalgCase("csingle_nsq_2",
array(
[[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=csingle),
array([2. + 1j, 1. + 2j, 3. - 3j], dtype=csingle)),
LinalgCase("cdouble_nsq_1",
array(
[[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=cdouble),
array([2. + 1j, 1. + 2j], dtype=cdouble)),
LinalgCase("cdouble_nsq_2",
array(
[[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=cdouble),
array([2. + 1j, 1. + 2j, 3. - 3j], dtype=cdouble)),
LinalgCase("cdouble_nsq_1_2",
array(
[[1. + 1j, 2. + 2j, 3. - 3j], [3. - 5j, 4. + 9j, 6. + 2j]], dtype=cdouble),
array([[2. + 1j, 1. + 2j], [1 - 1j, 2 - 2j]], dtype=cdouble)),
LinalgCase("cdouble_nsq_2_2",
array(
[[1. + 1j, 2. + 2j], [3. - 3j, 4. - 9j], [5. - 4j, 6. + 8j]], dtype=cdouble),
array([[2. + 1j, 1. + 2j], [1 - 1j, 2 - 2j], [1 - 1j, 2 - 2j]], dtype=cdouble)),
LinalgCase("8x11",
np.random.rand(8, 11),
np.random.rand(8)),
LinalgCase("1x5",
np.random.rand(1, 5),
np.random.rand(1)),
LinalgCase("5x1",
np.random.rand(5, 1),
np.random.rand(5)),
LinalgCase("0x4",
np.random.rand(0, 4),
np.random.rand(0),
tags={'size-0'}),
LinalgCase("4x0",
np.random.rand(4, 0),
np.random.rand(4),
tags={'size-0'}),
])
# hermitian test-cases
CASES += apply_tag('hermitian', [
LinalgCase("hsingle",
array([[1., 2.], [2., 1.]], dtype=single),
None),
LinalgCase("hdouble",
array([[1., 2.], [2., 1.]], dtype=double),
None),
LinalgCase("hcsingle",
array([[1., 2 + 3j], [2 - 3j, 1]], dtype=csingle),
None),
LinalgCase("hcdouble",
array([[1., 2 + 3j], [2 - 3j, 1]], dtype=cdouble),
None),
LinalgCase("hempty",
np.empty((0, 0), dtype=double),
None,
tags={'size-0'}),
LinalgCase("hnonarray",
[[1, 2], [2, 1]],
None),
LinalgCase("matrix_b_only",
array([[1., 2.], [2., 1.]]),
None),
LinalgCase("hmatrix_a_and_b",
matrix([[1., 2.], [2., 1.]]),
None),
LinalgCase("hmatrix_1x1",
np.random.rand(1, 1),
None),
])
#
# Gufunc test cases
#
def _make_generalized_cases():
new_cases = []
for case in CASES:
if not isinstance(case.a, np.ndarray):
continue
a = np.array([case.a, 2 * case.a, 3 * case.a])
if case.b is None:
b = None
else:
b = np.array([case.b, 7 * case.b, 6 * case.b])
new_case = LinalgCase(case.name + "_tile3", a, b,
tags=case.tags | {'generalized'})
new_cases.append(new_case)
a = np.array([case.a] * 2 * 3).reshape((3, 2) + case.a.shape)
if case.b is None:
b = None
else:
b = np.array([case.b] * 2 * 3).reshape((3, 2) + case.b.shape)
new_case = LinalgCase(case.name + "_tile213", a, b,
tags=case.tags | {'generalized'})
new_cases.append(new_case)
return new_cases
CASES += _make_generalized_cases()
#
# Generate stride combination variations of the above
#
def _stride_comb_iter(x):
"""
Generate cartesian product of strides for all axes
"""
if not isinstance(x, np.ndarray):
yield x, "nop"
return
stride_set = [(1,)] * x.ndim
stride_set[-1] = (1, 3, -4)
if x.ndim > 1:
stride_set[-2] = (1, 3, -4)
if x.ndim > 2:
stride_set[-3] = (1, -4)
for repeats in itertools.product(*tuple(stride_set)):
new_shape = [abs(a * b) for a, b in zip(x.shape, repeats)]
slices = tuple([slice(None, None, repeat) for repeat in repeats])
# new array with different strides, but same data
xi = np.empty(new_shape, dtype=x.dtype)
xi.view(np.uint32).fill(0xdeadbeef)
xi = xi[slices]
xi[...] = x
xi = xi.view(x.__class__)
assert_(np.all(xi == x))
yield xi, "stride_" + "_".join(["%+d" % j for j in repeats])
# generate also zero strides if possible
if x.ndim >= 1 and x.shape[-1] == 1:
s = list(x.strides)
s[-1] = 0
xi = np.lib.stride_tricks.as_strided(x, strides=s)
yield xi, "stride_xxx_0"
if x.ndim >= 2 and x.shape[-2] == 1:
s = list(x.strides)
s[-2] = 0
xi = np.lib.stride_tricks.as_strided(x, strides=s)
yield xi, "stride_xxx_0_x"
if x.ndim >= 2 and x.shape[:-2] == (1, 1):
s = list(x.strides)
s[-1] = 0
s[-2] = 0
xi = np.lib.stride_tricks.as_strided(x, strides=s)
yield xi, "stride_xxx_0_0"
def _make_strided_cases():
new_cases = []
for case in CASES:
for a, a_label in _stride_comb_iter(case.a):
for b, b_label in _stride_comb_iter(case.b):
new_case = LinalgCase(case.name + "_" + a_label + "_" + b_label, a, b,
tags=case.tags | {'strided'})
new_cases.append(new_case)
return new_cases
CASES += _make_strided_cases()
#
# Test different routines against the above cases
#
def _check_cases(func, require=set(), exclude=set()):
"""
Run func on each of the cases with all of the tags in require, and none
of the tags in exclude
"""
for case in CASES:
# filter by require and exclude
if case.tags & require != require:
continue
if case.tags & exclude:
continue
try:
case.check(func)
except Exception:
msg = "In test case: %r\n\n" % case
msg += traceback.format_exc()
raise AssertionError(msg)
class LinalgSquareTestCase(object):
def test_sq_cases(self):
_check_cases(self.do, require={'square'}, exclude={'generalized', 'size-0'})
def test_empty_sq_cases(self):
_check_cases(self.do, require={'square', 'size-0'}, exclude={'generalized'})
class LinalgNonsquareTestCase(object):
def test_nonsq_cases(self):
_check_cases(self.do, require={'nonsquare'}, exclude={'generalized', 'size-0'})
def test_empty_nonsq_cases(self):
_check_cases(self.do, require={'nonsquare', 'size-0'}, exclude={'generalized'})
class HermitianTestCase(object):
def test_herm_cases(self):
_check_cases(self.do, require={'hermitian'}, exclude={'generalized', 'size-0'})
def test_empty_herm_cases(self):
_check_cases(self.do, require={'hermitian', 'size-0'}, exclude={'generalized'})
class LinalgGeneralizedSquareTestCase(object):
@dec.slow
def test_generalized_sq_cases(self):
_check_cases(self.do, require={'generalized', 'square'}, exclude={'size-0'})
@dec.slow
def test_generalized_empty_sq_cases(self):
_check_cases(self.do, require={'generalized', 'square', 'size-0'})
class LinalgGeneralizedNonsquareTestCase(object):
@dec.slow
def test_generalized_nonsq_cases(self):
_check_cases(self.do, require={'generalized', 'nonsquare'}, exclude={'size-0'})
@dec.slow
def test_generalized_empty_nonsq_cases(self):
_check_cases(self.do, require={'generalized', 'nonsquare', 'size-0'})
class HermitianGeneralizedTestCase(object):
@dec.slow
def test_generalized_herm_cases(self):
_check_cases(self.do,
require={'generalized', 'hermitian'},
exclude={'size-0'})
@dec.slow
def test_generalized_empty_herm_cases(self):
_check_cases(self.do,
require={'generalized', 'hermitian', 'size-0'},
exclude={'none'})
def dot_generalized(a, b):
a = asarray(a)
if a.ndim >= 3:
if a.ndim == b.ndim:
# matrix x matrix
new_shape = a.shape[:-1] + b.shape[-1:]
elif a.ndim == b.ndim + 1:
# matrix x vector
new_shape = a.shape[:-1]
else:
raise ValueError("Not implemented...")
r = np.empty(new_shape, dtype=np.common_type(a, b))
for c in itertools.product(*map(range, a.shape[:-2])):
r[c] = dot(a[c], b[c])
return r
else:
return dot(a, b)
def identity_like_generalized(a):
a = asarray(a)
if a.ndim >= 3:
r = np.empty(a.shape, dtype=a.dtype)
for c in itertools.product(*map(range, a.shape[:-2])):
r[c] = identity(a.shape[-2])
return r
else:
return identity(a.shape[0])
class TestSolve(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
def do(self, a, b, tags):
x = linalg.solve(a, b)
assert_almost_equal(b, dot_generalized(a, x))
assert_(imply(isinstance(b, matrix), isinstance(x, matrix)))
def test_types(self):
def check(dtype):
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
assert_equal(linalg.solve(x, x).dtype, dtype)
for dtype in [single, double, csingle, cdouble]:
yield check, dtype
def test_0_size(self):
class ArraySubclass(np.ndarray):
pass
# Test system of 0x0 matrices
a = np.arange(8).reshape(2, 2, 2)
b = np.arange(6).reshape(1, 2, 3).view(ArraySubclass)
expected = linalg.solve(a, b)[:, 0:0, :]
result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0, :])
assert_array_equal(result, expected)
assert_(isinstance(result, ArraySubclass))
# Test errors for non-square and only b's dimension being 0
assert_raises(linalg.LinAlgError, linalg.solve, a[:, 0:0, 0:1], b)
assert_raises(ValueError, linalg.solve, a, b[:, 0:0, :])
# Test broadcasting error
b = np.arange(6).reshape(1, 3, 2) # broadcasting error
assert_raises(ValueError, linalg.solve, a, b)
assert_raises(ValueError, linalg.solve, a[0:0], b[0:0])
# Test zero "single equations" with 0x0 matrices.
b = np.arange(2).reshape(1, 2).view(ArraySubclass)
expected = linalg.solve(a, b)[:, 0:0]
result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0])
assert_array_equal(result, expected)
assert_(isinstance(result, ArraySubclass))
b = np.arange(3).reshape(1, 3)
assert_raises(ValueError, linalg.solve, a, b)
assert_raises(ValueError, linalg.solve, a[0:0], b[0:0])
assert_raises(ValueError, linalg.solve, a[:, 0:0, 0:0], b)
def test_0_size_k(self):
# test zero multiple equation (K=0) case.
class ArraySubclass(np.ndarray):
pass
a = np.arange(4).reshape(1, 2, 2)
b = np.arange(6).reshape(3, 2, 1).view(ArraySubclass)
expected = linalg.solve(a, b)[:, :, 0:0]
result = linalg.solve(a, b[:, :, 0:0])
assert_array_equal(result, expected)
assert_(isinstance(result, ArraySubclass))
# test both zero.
expected = linalg.solve(a, b)[:, 0:0, 0:0]
result = linalg.solve(a[:, 0:0, 0:0], b[:, 0:0, 0:0])
assert_array_equal(result, expected)
assert_(isinstance(result, ArraySubclass))
class TestInv(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
def do(self, a, b, tags):
a_inv = linalg.inv(a)
assert_almost_equal(dot_generalized(a, a_inv),
identity_like_generalized(a))
assert_(imply(isinstance(a, matrix), isinstance(a_inv, matrix)))
def test_types(self):
def check(dtype):
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
assert_equal(linalg.inv(x).dtype, dtype)
for dtype in [single, double, csingle, cdouble]:
yield check, dtype
def test_0_size(self):
# Check that all kinds of 0-sized arrays work
class ArraySubclass(np.ndarray):
pass
a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
res = linalg.inv(a)
assert_(res.dtype.type is np.float64)
assert_equal(a.shape, res.shape)
assert_(isinstance(res, ArraySubclass))
a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
res = linalg.inv(a)
assert_(res.dtype.type is np.complex64)
assert_equal(a.shape, res.shape)
assert_(isinstance(res, ArraySubclass))
class TestEigvals(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
def do(self, a, b, tags):
ev = linalg.eigvals(a)
evalues, evectors = linalg.eig(a)
assert_almost_equal(ev, evalues)
def test_types(self):
def check(dtype):
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
assert_equal(linalg.eigvals(x).dtype, dtype)
x = np.array([[1, 0.5], [-1, 1]], dtype=dtype)
assert_equal(linalg.eigvals(x).dtype, get_complex_dtype(dtype))
for dtype in [single, double, csingle, cdouble]:
yield check, dtype
def test_0_size(self):
# Check that all kinds of 0-sized arrays work
class ArraySubclass(np.ndarray):
pass
a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
res = linalg.eigvals(a)
assert_(res.dtype.type is np.float64)
assert_equal((0, 1), res.shape)
# This is just for documentation, it might make sense to change:
assert_(isinstance(res, np.ndarray))
a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
res = linalg.eigvals(a)
assert_(res.dtype.type is np.complex64)
assert_equal((0,), res.shape)
# This is just for documentation, it might make sense to change:
assert_(isinstance(res, np.ndarray))
class TestEig(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
def do(self, a, b, tags):
evalues, evectors = linalg.eig(a)
assert_allclose(dot_generalized(a, evectors),
np.asarray(evectors) * np.asarray(evalues)[..., None, :],
rtol=get_rtol(evalues.dtype))
assert_(imply(isinstance(a, matrix), isinstance(evectors, matrix)))
def test_types(self):
def check(dtype):
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
w, v = np.linalg.eig(x)
assert_equal(w.dtype, dtype)
assert_equal(v.dtype, dtype)
x = np.array([[1, 0.5], [-1, 1]], dtype=dtype)
w, v = np.linalg.eig(x)
assert_equal(w.dtype, get_complex_dtype(dtype))
assert_equal(v.dtype, get_complex_dtype(dtype))
for dtype in [single, double, csingle, cdouble]:
yield check, dtype
def test_0_size(self):
# Check that all kinds of 0-sized arrays work
class ArraySubclass(np.ndarray):
pass
a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
res, res_v = linalg.eig(a)
assert_(res_v.dtype.type is np.float64)
assert_(res.dtype.type is np.float64)
assert_equal(a.shape, res_v.shape)
assert_equal((0, 1), res.shape)
# This is just for documentation, it might make sense to change:
assert_(isinstance(a, np.ndarray))
a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
res, res_v = linalg.eig(a)
assert_(res_v.dtype.type is np.complex64)
assert_(res.dtype.type is np.complex64)
assert_equal(a.shape, res_v.shape)
assert_equal((0,), res.shape)
# This is just for documentation, it might make sense to change:
assert_(isinstance(a, np.ndarray))
class TestSVD(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
def do(self, a, b, tags):
if 'size-0' in tags:
assert_raises(LinAlgError, linalg.svd, a, 0)
return
u, s, vt = linalg.svd(a, 0)
assert_allclose(a, dot_generalized(np.asarray(u) * np.asarray(s)[..., None, :],
np.asarray(vt)),
rtol=get_rtol(u.dtype))
assert_(imply(isinstance(a, matrix), isinstance(u, matrix)))
assert_(imply(isinstance(a, matrix), isinstance(vt, matrix)))
def test_types(self):
def check(dtype):
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
u, s, vh = linalg.svd(x)
assert_equal(u.dtype, dtype)
assert_equal(s.dtype, get_real_dtype(dtype))
assert_equal(vh.dtype, dtype)
s = linalg.svd(x, compute_uv=False)
assert_equal(s.dtype, get_real_dtype(dtype))
for dtype in [single, double, csingle, cdouble]:
yield check, dtype
def test_0_size(self):
# These raise errors currently
# (which does not mean that it may not make sense)
a = np.zeros((0, 0), dtype=np.complex64)
assert_raises(linalg.LinAlgError, linalg.svd, a)
a = np.zeros((0, 1), dtype=np.complex64)
assert_raises(linalg.LinAlgError, linalg.svd, a)
a = np.zeros((1, 0), dtype=np.complex64)
assert_raises(linalg.LinAlgError, linalg.svd, a)
class TestCondSVD(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
def do(self, a, b, tags):
c = asarray(a) # a might be a matrix
if 'size-0' in tags:
assert_raises(LinAlgError, linalg.svd, c, compute_uv=False)
return
s = linalg.svd(c, compute_uv=False)
assert_almost_equal(
s[..., 0] / s[..., -1], linalg.cond(a),
single_decimal=5, double_decimal=11)
def test_stacked_arrays_explicitly(self):
A = np.array([[1., 2., 1.], [0, -2., 0], [6., 2., 3.]])
assert_equal(linalg.cond(A), linalg.cond(A[None, ...])[0])
class TestCond2(LinalgSquareTestCase):
def do(self, a, b, tags):
c = asarray(a) # a might be a matrix
if 'size-0' in tags:
assert_raises(LinAlgError, linalg.svd, c, compute_uv=False)
return
s = linalg.svd(c, compute_uv=False)
assert_almost_equal(
s[..., 0] / s[..., -1], linalg.cond(a, 2),
single_decimal=5, double_decimal=11)
def test_stacked_arrays_explicitly(self):
A = np.array([[1., 2., 1.], [0, -2., 0], [6., 2., 3.]])
assert_equal(linalg.cond(A, 2), linalg.cond(A[None, ...], 2)[0])
class TestCondInf(object):
def test(self):
A = array([[1., 0, 0], [0, -2., 0], [0, 0, 3.]])
assert_almost_equal(linalg.cond(A, inf), 3.)
class TestPinv(LinalgSquareTestCase, LinalgNonsquareTestCase):
def do(self, a, b, tags):
a_ginv = linalg.pinv(a)
# `a @ a_ginv == I` does not hold if a is singular
assert_almost_equal(dot(a, a_ginv).dot(a), a, single_decimal=5, double_decimal=11)
assert_(imply(isinstance(a, matrix), isinstance(a_ginv, matrix)))
class TestDet(LinalgSquareTestCase, LinalgGeneralizedSquareTestCase):
def do(self, a, b, tags):
d = linalg.det(a)
(s, ld) = linalg.slogdet(a)
if asarray(a).dtype.type in (single, double):
ad = asarray(a).astype(double)
else:
ad = asarray(a).astype(cdouble)
ev = linalg.eigvals(ad)
assert_almost_equal(d, multiply.reduce(ev, axis=-1))
assert_almost_equal(s * np.exp(ld), multiply.reduce(ev, axis=-1))
s = np.atleast_1d(s)
ld = np.atleast_1d(ld)
m = (s != 0)
assert_almost_equal(np.abs(s[m]), 1)
assert_equal(ld[~m], -inf)
def test_zero(self):
assert_equal(linalg.det([[0.0]]), 0.0)
assert_equal(type(linalg.det([[0.0]])), double)
assert_equal(linalg.det([[0.0j]]), 0.0)
assert_equal(type(linalg.det([[0.0j]])), cdouble)
assert_equal(linalg.slogdet([[0.0]]), (0.0, -inf))
assert_equal(type(linalg.slogdet([[0.0]])[0]), double)
assert_equal(type(linalg.slogdet([[0.0]])[1]), double)
assert_equal(linalg.slogdet([[0.0j]]), (0.0j, -inf))
assert_equal(type(linalg.slogdet([[0.0j]])[0]), cdouble)
assert_equal(type(linalg.slogdet([[0.0j]])[1]), double)
def test_types(self):
def check(dtype):
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
assert_equal(np.linalg.det(x).dtype, dtype)
ph, s = np.linalg.slogdet(x)
assert_equal(s.dtype, get_real_dtype(dtype))
assert_equal(ph.dtype, dtype)
for dtype in [single, double, csingle, cdouble]:
yield check, dtype
def test_0_size(self):
a = np.zeros((0, 0), dtype=np.complex64)
res = linalg.det(a)
assert_equal(res, 1.)
assert_(res.dtype.type is np.complex64)
res = linalg.slogdet(a)
assert_equal(res, (1, 0))
assert_(res[0].dtype.type is np.complex64)
assert_(res[1].dtype.type is np.float32)
a = np.zeros((0, 0), dtype=np.float64)
res = linalg.det(a)
assert_equal(res, 1.)
assert_(res.dtype.type is np.float64)
res = linalg.slogdet(a)
assert_equal(res, (1, 0))
assert_(res[0].dtype.type is np.float64)
assert_(res[1].dtype.type is np.float64)
class TestLstsq(LinalgSquareTestCase, LinalgNonsquareTestCase):
def do(self, a, b, tags):
if 'size-0' in tags:
assert_raises(LinAlgError, linalg.lstsq, a, b)
return
arr = np.asarray(a)
m, n = arr.shape
u, s, vt = linalg.svd(a, 0)
x, residuals, rank, sv = linalg.lstsq(a, b)
if m <= n:
assert_almost_equal(b, dot(a, x))
assert_equal(rank, m)
else:
assert_equal(rank, n)
assert_almost_equal(sv, sv.__array_wrap__(s))
if rank == n and m > n:
expect_resids = (
np.asarray(abs(np.dot(a, x) - b)) ** 2).sum(axis=0)
expect_resids = np.asarray(expect_resids)
if np.asarray(b).ndim == 1:
expect_resids.shape = (1,)
assert_equal(residuals.shape, expect_resids.shape)
else:
expect_resids = np.array([]).view(type(x))
assert_almost_equal(residuals, expect_resids)
assert_(np.issubdtype(residuals.dtype, np.floating))
assert_(imply(isinstance(b, matrix), isinstance(x, matrix)))
assert_(imply(isinstance(b, matrix), isinstance(residuals, matrix)))
class TestMatrixPower(object):
R90 = array([[0, 1], [-1, 0]])
Arb22 = array([[4, -7], [-2, 10]])
noninv = array([[1, 0], [0, 0]])
arbfloat = array([[0.1, 3.2], [1.2, 0.7]])
large = identity(10)
t = large[1, :].copy()
large[1, :] = large[0,:]
large[0, :] = t
def test_large_power(self):
assert_equal(
matrix_power(self.R90, 2 ** 100 + 2 ** 10 + 2 ** 5 + 1), self.R90)
def test_large_power_trailing_zero(self):
assert_equal(
matrix_power(self.R90, 2 ** 100 + 2 ** 10 + 2 ** 5), identity(2))
def testip_zero(self):
def tz(M):
mz = matrix_power(M, 0)
assert_equal(mz, identity(M.shape[0]))
assert_equal(mz.dtype, M.dtype)
for M in [self.Arb22, self.arbfloat, self.large]:
yield tz, M
def testip_one(self):
def tz(M):
mz = matrix_power(M, 1)
assert_equal(mz, M)
assert_equal(mz.dtype, M.dtype)
for M in [self.Arb22, self.arbfloat, self.large]:
yield tz, M
def testip_two(self):
def tz(M):
mz = matrix_power(M, 2)
assert_equal(mz, dot(M, M))
assert_equal(mz.dtype, M.dtype)
for M in [self.Arb22, self.arbfloat, self.large]:
yield tz, M
def testip_invert(self):
def tz(M):
mz = matrix_power(M, -1)
assert_almost_equal(identity(M.shape[0]), dot(mz, M))
for M in [self.R90, self.Arb22, self.arbfloat, self.large]:
yield tz, M
def test_invert_noninvertible(self):
import numpy.linalg
assert_raises(numpy.linalg.linalg.LinAlgError,
lambda: matrix_power(self.noninv, -1))
class TestBoolPower(object):
def test_square(self):
A = array([[True, False], [True, True]])
assert_equal(matrix_power(A, 2), A)
class TestEigvalsh(HermitianTestCase, HermitianGeneralizedTestCase):
def do(self, a, b, tags):
# note that eigenvalue arrays returned by eig must be sorted since
# their order isn't guaranteed.
ev = linalg.eigvalsh(a, 'L')
evalues, evectors = linalg.eig(a)
evalues.sort(axis=-1)
assert_allclose(ev, evalues, rtol=get_rtol(ev.dtype))
ev2 = linalg.eigvalsh(a, 'U')
assert_allclose(ev2, evalues, rtol=get_rtol(ev.dtype))
def test_types(self):
def check(dtype):
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
w = np.linalg.eigvalsh(x)
assert_equal(w.dtype, get_real_dtype(dtype))
for dtype in [single, double, csingle, cdouble]:
yield check, dtype
def test_invalid(self):
x = np.array([[1, 0.5], [0.5, 1]], dtype=np.float32)
assert_raises(ValueError, np.linalg.eigvalsh, x, UPLO="lrong")
assert_raises(ValueError, np.linalg.eigvalsh, x, "lower")
assert_raises(ValueError, np.linalg.eigvalsh, x, "upper")
def test_UPLO(self):
Klo = np.array([[0, 0], [1, 0]], dtype=np.double)
Kup = np.array([[0, 1], [0, 0]], dtype=np.double)
tgt = np.array([-1, 1], dtype=np.double)
rtol = get_rtol(np.double)
# Check default is 'L'
w = np.linalg.eigvalsh(Klo)
assert_allclose(w, tgt, rtol=rtol)
# Check 'L'
w = np.linalg.eigvalsh(Klo, UPLO='L')
assert_allclose(w, tgt, rtol=rtol)
# Check 'l'
w = np.linalg.eigvalsh(Klo, UPLO='l')
assert_allclose(w, tgt, rtol=rtol)
# Check 'U'
w = np.linalg.eigvalsh(Kup, UPLO='U')
assert_allclose(w, tgt, rtol=rtol)
# Check 'u'
w = np.linalg.eigvalsh(Kup, UPLO='u')
assert_allclose(w, tgt, rtol=rtol)
def test_0_size(self):
# Check that all kinds of 0-sized arrays work
class ArraySubclass(np.ndarray):
pass
a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
res = linalg.eigvalsh(a)
assert_(res.dtype.type is np.float64)
assert_equal((0, 1), res.shape)
# This is just for documentation, it might make sense to change:
assert_(isinstance(res, np.ndarray))
a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
res = linalg.eigvalsh(a)
assert_(res.dtype.type is np.float32)
assert_equal((0,), res.shape)
# This is just for documentation, it might make sense to change:
assert_(isinstance(res, np.ndarray))
class TestEigh(HermitianTestCase, HermitianGeneralizedTestCase):
def do(self, a, b, tags):
# note that eigenvalue arrays returned by eig must be sorted since
# their order isn't guaranteed.
ev, evc = linalg.eigh(a)
evalues, evectors = linalg.eig(a)
evalues.sort(axis=-1)
assert_almost_equal(ev, evalues)
assert_allclose(dot_generalized(a, evc),
np.asarray(ev)[..., None, :] * np.asarray(evc),
rtol=get_rtol(ev.dtype))
ev2, evc2 = linalg.eigh(a, 'U')
assert_almost_equal(ev2, evalues)
assert_allclose(dot_generalized(a, evc2),
np.asarray(ev2)[..., None, :] * np.asarray(evc2),
rtol=get_rtol(ev.dtype), err_msg=repr(a))
def test_types(self):
def check(dtype):
x = np.array([[1, 0.5], [0.5, 1]], dtype=dtype)
w, v = np.linalg.eigh(x)
assert_equal(w.dtype, get_real_dtype(dtype))
assert_equal(v.dtype, dtype)
for dtype in [single, double, csingle, cdouble]:
yield check, dtype
def test_invalid(self):
x = np.array([[1, 0.5], [0.5, 1]], dtype=np.float32)
assert_raises(ValueError, np.linalg.eigh, x, UPLO="lrong")
assert_raises(ValueError, np.linalg.eigh, x, "lower")
assert_raises(ValueError, np.linalg.eigh, x, "upper")
def test_UPLO(self):
Klo = np.array([[0, 0], [1, 0]], dtype=np.double)
Kup = np.array([[0, 1], [0, 0]], dtype=np.double)
tgt = np.array([-1, 1], dtype=np.double)
rtol = get_rtol(np.double)
# Check default is 'L'
w, v = np.linalg.eigh(Klo)
assert_allclose(w, tgt, rtol=rtol)
# Check 'L'
w, v = np.linalg.eigh(Klo, UPLO='L')
assert_allclose(w, tgt, rtol=rtol)
# Check 'l'
w, v = np.linalg.eigh(Klo, UPLO='l')
assert_allclose(w, tgt, rtol=rtol)
# Check 'U'
w, v = np.linalg.eigh(Kup, UPLO='U')
assert_allclose(w, tgt, rtol=rtol)
# Check 'u'
w, v = np.linalg.eigh(Kup, UPLO='u')
assert_allclose(w, tgt, rtol=rtol)
def test_0_size(self):
# Check that all kinds of 0-sized arrays work
class ArraySubclass(np.ndarray):
pass
a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
res, res_v = linalg.eigh(a)
assert_(res_v.dtype.type is np.float64)
assert_(res.dtype.type is np.float64)
assert_equal(a.shape, res_v.shape)
assert_equal((0, 1), res.shape)
# This is just for documentation, it might make sense to change:
assert_(isinstance(a, np.ndarray))
a = np.zeros((0, 0), dtype=np.complex64).view(ArraySubclass)
res, res_v = linalg.eigh(a)
assert_(res_v.dtype.type is np.complex64)
assert_(res.dtype.type is np.float32)
assert_equal(a.shape, res_v.shape)
assert_equal((0,), res.shape)
# This is just for documentation, it might make sense to change:
assert_(isinstance(a, np.ndarray))
class _TestNorm(object):
dt = None
dec = None
def test_empty(self):
assert_equal(norm([]), 0.0)
assert_equal(norm(array([], dtype=self.dt)), 0.0)
assert_equal(norm(atleast_2d(array([], dtype=self.dt))), 0.0)
def test_vector_return_type(self):
a = np.array([1, 0, 1])
exact_types = np.typecodes['AllInteger']
inexact_types = np.typecodes['AllFloat']
all_types = exact_types + inexact_types
for each_inexact_types in all_types:
at = a.astype(each_inexact_types)
an = norm(at, -np.inf)
assert_(issubclass(an.dtype.type, np.floating))
assert_almost_equal(an, 0.0)
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, "divide by zero encountered")
an = norm(at, -1)
assert_(issubclass(an.dtype.type, np.floating))
assert_almost_equal(an, 0.0)
an = norm(at, 0)
assert_(issubclass(an.dtype.type, np.floating))
assert_almost_equal(an, 2)
an = norm(at, 1)
assert_(issubclass(an.dtype.type, np.floating))
assert_almost_equal(an, 2.0)
an = norm(at, 2)
assert_(issubclass(an.dtype.type, np.floating))
assert_almost_equal(an, an.dtype.type(2.0)**an.dtype.type(1.0/2.0))
an = norm(at, 4)
assert_(issubclass(an.dtype.type, np.floating))
assert_almost_equal(an, an.dtype.type(2.0)**an.dtype.type(1.0/4.0))
an = norm(at, np.inf)
assert_(issubclass(an.dtype.type, np.floating))
assert_almost_equal(an, 1.0)
def test_matrix_return_type(self):
a = np.array([[1, 0, 1], [0, 1, 1]])
exact_types = np.typecodes['AllInteger']
# float32, complex64, float64, complex128 types are the only types
# allowed by `linalg`, which performs the matrix operations used
# within `norm`.
inexact_types = 'fdFD'
all_types = exact_types + inexact_types
for each_inexact_types in all_types:
at = a.astype(each_inexact_types)
an = norm(at, -np.inf)
assert_(issubclass(an.dtype.type, np.floating))
assert_almost_equal(an, 2.0)
with suppress_warnings() as sup:
sup.filter(RuntimeWarning, "divide by zero encountered")
an = norm(at, -1)
assert_(issubclass(an.dtype.type, np.floating))
assert_almost_equal(an, 1.0)
an = norm(at, 1)
assert_(issubclass(an.dtype.type, np.floating))
assert_almost_equal(an, 2.0)
an = norm(at, 2)
assert_(issubclass(an.dtype.type, np.floating))
assert_almost_equal(an, 3.0**(1.0/2.0))
an = norm(at, -2)
assert_(issubclass(an.dtype.type, np.floating))
assert_almost_equal(an, 1.0)
an = norm(at, np.inf)
assert_(issubclass(an.dtype.type, np.floating))
assert_almost_equal(an, 2.0)
an = norm(at, 'fro')
assert_(issubclass(an.dtype.type, np.floating))
assert_almost_equal(an, 2.0)
an = norm(at, 'nuc')
assert_(issubclass(an.dtype.type, np.floating))
# Lower bar needed to support low precision floats.
# They end up being off by 1 in the 7th place.
old_assert_almost_equal(an, 2.7320508075688772, decimal=6)
def test_vector(self):
a = [1, 2, 3, 4]
b = [-1, -2, -3, -4]
c = [-1, 2, -3, 4]
def _test(v):
np.testing.assert_almost_equal(norm(v), 30 ** 0.5,
decimal=self.dec)
np.testing.assert_almost_equal(norm(v, inf), 4.0,
decimal=self.dec)
np.testing.assert_almost_equal(norm(v, -inf), 1.0,
decimal=self.dec)
np.testing.assert_almost_equal(norm(v, 1), 10.0,
decimal=self.dec)
np.testing.assert_almost_equal(norm(v, -1), 12.0 / 25,
decimal=self.dec)
np.testing.assert_almost_equal(norm(v, 2), 30 ** 0.5,
decimal=self.dec)
np.testing.assert_almost_equal(norm(v, -2), ((205. / 144) ** -0.5),
decimal=self.dec)
np.testing.assert_almost_equal(norm(v, 0), 4,
decimal=self.dec)
for v in (a, b, c,):
_test(v)
for v in (array(a, dtype=self.dt), array(b, dtype=self.dt),
array(c, dtype=self.dt)):
_test(v)
def test_matrix_2x2(self):
A = matrix([[1, 3], [5, 7]], dtype=self.dt)
assert_almost_equal(norm(A), 84 ** 0.5)
assert_almost_equal(norm(A, 'fro'), 84 ** 0.5)
assert_almost_equal(norm(A, 'nuc'), 10.0)
assert_almost_equal(norm(A, inf), 12.0)
assert_almost_equal(norm(A, -inf), 4.0)
assert_almost_equal(norm(A, 1), 10.0)
assert_almost_equal(norm(A, -1), 6.0)
assert_almost_equal(norm(A, 2), 9.1231056256176615)
assert_almost_equal(norm(A, -2), 0.87689437438234041)
assert_raises(ValueError, norm, A, 'nofro')
assert_raises(ValueError, norm, A, -3)
assert_raises(ValueError, norm, A, 0)
def test_matrix_3x3(self):
# This test has been added because the 2x2 example
# happened to have equal nuclear norm and induced 1-norm.
# The 1/10 scaling factor accommodates the absolute tolerance
# used in assert_almost_equal.
A = (1 / 10) * \
np.array([[1, 2, 3], [6, 0, 5], [3, 2, 1]], dtype=self.dt)
assert_almost_equal(norm(A), (1 / 10) * 89 ** 0.5)
assert_almost_equal(norm(A, 'fro'), (1 / 10) * 89 ** 0.5)
assert_almost_equal(norm(A, 'nuc'), 1.3366836911774836)
assert_almost_equal(norm(A, inf), 1.1)
assert_almost_equal(norm(A, -inf), 0.6)
assert_almost_equal(norm(A, 1), 1.0)
assert_almost_equal(norm(A, -1), 0.4)
assert_almost_equal(norm(A, 2), 0.88722940323461277)
assert_almost_equal(norm(A, -2), 0.19456584790481812)
def test_axis(self):
# Vector norms.
# Compare the use of `axis` with computing the norm of each row
# or column separately.
A = array([[1, 2, 3], [4, 5, 6]], dtype=self.dt)
for order in [None, -1, 0, 1, 2, 3, np.Inf, -np.Inf]:
expected0 = [norm(A[:, k], ord=order) for k in range(A.shape[1])]
assert_almost_equal(norm(A, ord=order, axis=0), expected0)
expected1 = [norm(A[k, :], ord=order) for k in range(A.shape[0])]
assert_almost_equal(norm(A, ord=order, axis=1), expected1)
# Matrix norms.
B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)
nd = B.ndim
for order in [None, -2, 2, -1, 1, np.Inf, -np.Inf, 'fro']:
for axis in itertools.combinations(range(-nd, nd), 2):
row_axis, col_axis = axis
if row_axis < 0:
row_axis += nd
if col_axis < 0:
col_axis += nd
if row_axis == col_axis:
assert_raises(ValueError, norm, B, ord=order, axis=axis)
else:
n = norm(B, ord=order, axis=axis)
# The logic using k_index only works for nd = 3.
# This has to be changed if nd is increased.
k_index = nd - (row_axis + col_axis)
if row_axis < col_axis:
expected = [norm(B[:].take(k, axis=k_index), ord=order)
for k in range(B.shape[k_index])]
else:
expected = [norm(B[:].take(k, axis=k_index).T, ord=order)
for k in range(B.shape[k_index])]
assert_almost_equal(n, expected)
def test_keepdims(self):
A = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)
allclose_err = 'order {0}, axis = {1}'
shape_err = 'Shape mismatch found {0}, expected {1}, order={2}, axis={3}'
# check the order=None, axis=None case
expected = norm(A, ord=None, axis=None)
found = norm(A, ord=None, axis=None, keepdims=True)
assert_allclose(np.squeeze(found), expected,
err_msg=allclose_err.format(None, None))
expected_shape = (1, 1, 1)
assert_(found.shape == expected_shape,
shape_err.format(found.shape, expected_shape, None, None))
# Vector norms.
for order in [None, -1, 0, 1, 2, 3, np.Inf, -np.Inf]:
for k in range(A.ndim):
expected = norm(A, ord=order, axis=k)
found = norm(A, ord=order, axis=k, keepdims=True)
assert_allclose(np.squeeze(found), expected,
err_msg=allclose_err.format(order, k))
expected_shape = list(A.shape)
expected_shape[k] = 1
expected_shape = tuple(expected_shape)
assert_(found.shape == expected_shape,
shape_err.format(found.shape, expected_shape, order, k))
# Matrix norms.
for order in [None, -2, 2, -1, 1, np.Inf, -np.Inf, 'fro', 'nuc']:
for k in itertools.permutations(range(A.ndim), 2):
expected = norm(A, ord=order, axis=k)
found = norm(A, ord=order, axis=k, keepdims=True)
assert_allclose(np.squeeze(found), expected,
err_msg=allclose_err.format(order, k))
expected_shape = list(A.shape)
expected_shape[k[0]] = 1
expected_shape[k[1]] = 1
expected_shape = tuple(expected_shape)
assert_(found.shape == expected_shape,
shape_err.format(found.shape, expected_shape, order, k))
def test_bad_args(self):
# Check that bad arguments raise the appropriate exceptions.
A = array([[1, 2, 3], [4, 5, 6]], dtype=self.dt)
B = np.arange(1, 25, dtype=self.dt).reshape(2, 3, 4)
# Using `axis=<integer>` or passing in a 1-D array implies vector
# norms are being computed, so also using `ord='fro'`
# or `ord='nuc'` raises a ValueError.
assert_raises(ValueError, norm, A, 'fro', 0)
assert_raises(ValueError, norm, A, 'nuc', 0)
assert_raises(ValueError, norm, [3, 4], 'fro', None)
assert_raises(ValueError, norm, [3, 4], 'nuc', None)
# Similarly, norm should raise an exception when ord is any finite
# number other than 1, 2, -1 or -2 when computing matrix norms.
for order in [0, 3]:
assert_raises(ValueError, norm, A, order, None)
assert_raises(ValueError, norm, A, order, (0, 1))
assert_raises(ValueError, norm, B, order, (1, 2))
# Invalid axis
assert_raises(np.AxisError, norm, B, None, 3)
assert_raises(np.AxisError, norm, B, None, (2, 3))
assert_raises(ValueError, norm, B, None, (0, 1, 2))
class TestNorm_NonSystematic(object):
def test_longdouble_norm(self):
# Non-regression test: p-norm of longdouble would previously raise
# UnboundLocalError.
x = np.arange(10, dtype=np.longdouble)
old_assert_almost_equal(norm(x, ord=3), 12.65, decimal=2)
def test_intmin(self):
# Non-regression test: p-norm of signed integer would previously do
# float cast and abs in the wrong order.
x = np.array([-2 ** 31], dtype=np.int32)
old_assert_almost_equal(norm(x, ord=3), 2 ** 31, decimal=5)
def test_complex_high_ord(self):
# gh-4156
d = np.empty((2,), dtype=np.clongdouble)
d[0] = 6 + 7j
d[1] = -6 + 7j
res = 11.615898132184
old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=10)
d = d.astype(np.complex128)
old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=9)
d = d.astype(np.complex64)
old_assert_almost_equal(np.linalg.norm(d, ord=3), res, decimal=5)
class TestNormDouble(_TestNorm):
dt = np.double
dec = 12
class TestNormSingle(_TestNorm):
dt = np.float32
dec = 6
class TestNormInt64(_TestNorm):
dt = np.int64
dec = 12
class TestMatrixRank(object):
def test_matrix_rank(self):
# Full rank matrix
yield assert_equal, 4, matrix_rank(np.eye(4))
# rank deficient matrix
I = np.eye(4)
I[-1, -1] = 0.
yield assert_equal, matrix_rank(I), 3
# All zeros - zero rank
yield assert_equal, matrix_rank(np.zeros((4, 4))), 0
# 1 dimension - rank 1 unless all 0
yield assert_equal, matrix_rank([1, 0, 0, 0]), 1
yield assert_equal, matrix_rank(np.zeros((4,))), 0
# accepts array-like
yield assert_equal, matrix_rank([1]), 1
# greater than 2 dimensions treated as stacked matrices
ms = np.array([I, np.eye(4), np.zeros((4,4))])
yield assert_equal, matrix_rank(ms), np.array([3, 4, 0])
# works on scalar
yield assert_equal, matrix_rank(1), 1
def test_reduced_rank():
# Test matrices with reduced rank
rng = np.random.RandomState(20120714)
for i in range(100):
# Make a rank deficient matrix
X = rng.normal(size=(40, 10))
X[:, 0] = X[:, 1] + X[:, 2]
# Assert that matrix_rank detected deficiency
assert_equal(matrix_rank(X), 9)
X[:, 3] = X[:, 4] + X[:, 5]
assert_equal(matrix_rank(X), 8)
class TestQR(object):
def check_qr(self, a):
# This test expects the argument `a` to be an ndarray or
# a subclass of an ndarray of inexact type.
a_type = type(a)
a_dtype = a.dtype
m, n = a.shape
k = min(m, n)
# mode == 'complete'
q, r = linalg.qr(a, mode='complete')
assert_(q.dtype == a_dtype)
assert_(r.dtype == a_dtype)
assert_(isinstance(q, a_type))
assert_(isinstance(r, a_type))
assert_(q.shape == (m, m))
assert_(r.shape == (m, n))
assert_almost_equal(dot(q, r), a)
assert_almost_equal(dot(q.T.conj(), q), np.eye(m))
assert_almost_equal(np.triu(r), r)
# mode == 'reduced'
q1, r1 = linalg.qr(a, mode='reduced')
assert_(q1.dtype == a_dtype)
assert_(r1.dtype == a_dtype)
assert_(isinstance(q1, a_type))
assert_(isinstance(r1, a_type))
assert_(q1.shape == (m, k))
assert_(r1.shape == (k, n))
assert_almost_equal(dot(q1, r1), a)
assert_almost_equal(dot(q1.T.conj(), q1), np.eye(k))
assert_almost_equal(np.triu(r1), r1)
# mode == 'r'
r2 = linalg.qr(a, mode='r')
assert_(r2.dtype == a_dtype)
assert_(isinstance(r2, a_type))
assert_almost_equal(r2, r1)
def test_qr_empty(self):
a = np.zeros((0, 2))
assert_raises(linalg.LinAlgError, linalg.qr, a)
def test_mode_raw(self):
# The factorization is not unique and varies between libraries,
# so it is not possible to check against known values. Functional
# testing is a possibility, but awaits the exposure of more
# of the functions in lapack_lite. Consequently, this test is
# very limited in scope. Note that the results are in FORTRAN
# order, hence the h arrays are transposed.
a = array([[1, 2], [3, 4], [5, 6]], dtype=np.double)
# Test double
h, tau = linalg.qr(a, mode='raw')
assert_(h.dtype == np.double)
assert_(tau.dtype == np.double)
assert_(h.shape == (2, 3))
assert_(tau.shape == (2,))
h, tau = linalg.qr(a.T, mode='raw')
assert_(h.dtype == np.double)
assert_(tau.dtype == np.double)
assert_(h.shape == (3, 2))
assert_(tau.shape == (2,))
def test_mode_all_but_economic(self):
a = array([[1, 2], [3, 4]])
b = array([[1, 2], [3, 4], [5, 6]])
for dt in "fd":
m1 = a.astype(dt)
m2 = b.astype(dt)
self.check_qr(m1)
self.check_qr(m2)
self.check_qr(m2.T)
self.check_qr(matrix(m1))
for dt in "fd":
m1 = 1 + 1j * a.astype(dt)
m2 = 1 + 1j * b.astype(dt)
self.check_qr(m1)
self.check_qr(m2)
self.check_qr(m2.T)
self.check_qr(matrix(m1))
def test_0_size(self):
# There may be good ways to do (some of this) reasonably:
a = np.zeros((0, 0))
assert_raises(linalg.LinAlgError, linalg.qr, a)
a = np.zeros((0, 1))
assert_raises(linalg.LinAlgError, linalg.qr, a)
a = np.zeros((1, 0))
assert_raises(linalg.LinAlgError, linalg.qr, a)
class TestCholesky(object):
# TODO: are there no other tests for cholesky?
def test_0_size(self):
class ArraySubclass(np.ndarray):
pass
a = np.zeros((0, 1, 1), dtype=np.int_).view(ArraySubclass)
res = linalg.cholesky(a)
assert_equal(a.shape, res.shape)
assert_(res.dtype.type is np.float64)
# for documentation purpose:
assert_(isinstance(res, np.ndarray))
a = np.zeros((1, 0, 0), dtype=np.complex64).view(ArraySubclass)
res = linalg.cholesky(a)
assert_equal(a.shape, res.shape)
assert_(res.dtype.type is np.complex64)
assert_(isinstance(res, np.ndarray))
def test_byteorder_check():
# Byte order check should pass for native order
if sys.byteorder == 'little':
native = '<'
else:
native = '>'
for dtt in (np.float32, np.float64):
arr = np.eye(4, dtype=dtt)
n_arr = arr.newbyteorder(native)
sw_arr = arr.newbyteorder('S').byteswap()
assert_equal(arr.dtype.byteorder, '=')
for routine in (linalg.inv, linalg.det, linalg.pinv):
# Normal call
res = routine(arr)
# Native but not '='
assert_array_equal(res, routine(n_arr))
# Swapped
assert_array_equal(res, routine(sw_arr))
def test_generalized_raise_multiloop():
# It should raise an error even if the error doesn't occur in the
# last iteration of the ufunc inner loop
invertible = np.array([[1, 2], [3, 4]])
non_invertible = np.array([[1, 1], [1, 1]])
x = np.zeros([4, 4, 2, 2])[1::2]
x[...] = invertible
x[0, 0] = non_invertible
assert_raises(np.linalg.LinAlgError, np.linalg.inv, x)
def test_xerbla_override():
# Check that our xerbla has been successfully linked in. If it is not,
# the default xerbla routine is called, which prints a message to stdout
# and may, or may not, abort the process depending on the LAPACK package.
XERBLA_OK = 255
try:
pid = os.fork()
except (OSError, AttributeError):
# fork failed, or not running on POSIX
raise SkipTest("Not POSIX or fork failed.")
if pid == 0:
# child; close i/o file handles
os.close(1)
os.close(0)
# Avoid producing core files.
import resource
resource.setrlimit(resource.RLIMIT_CORE, (0, 0))
# These calls may abort.
try:
np.linalg.lapack_lite.xerbla()
except ValueError:
pass
except:
os._exit(os.EX_CONFIG)
try:
a = np.array([[1.]])
np.linalg.lapack_lite.dorgqr(
1, 1, 1, a,
0, # <- invalid value
a, a, 0, 0)
except ValueError as e:
if "DORGQR parameter number 5" in str(e):
# success, reuse error code to mark success as
# FORTRAN STOP returns as success.
os._exit(XERBLA_OK)
# Did not abort, but our xerbla was not linked in.
os._exit(os.EX_CONFIG)
else:
# parent
pid, status = os.wait()
if os.WEXITSTATUS(status) != XERBLA_OK:
raise SkipTest('Numpy xerbla not linked in.')
class TestMultiDot(object):
def test_basic_function_with_three_arguments(self):
# multi_dot with three arguments uses a fast hand coded algorithm to
# determine the optimal order. Therefore test it separately.
A = np.random.random((6, 2))
B = np.random.random((2, 6))
C = np.random.random((6, 2))
assert_almost_equal(multi_dot([A, B, C]), A.dot(B).dot(C))
assert_almost_equal(multi_dot([A, B, C]), np.dot(A, np.dot(B, C)))
def test_basic_function_with_dynamic_programing_optimization(self):
# multi_dot with four or more arguments uses the dynamic programing
# optimization and therefore deserve a separate
A = np.random.random((6, 2))
B = np.random.random((2, 6))
C = np.random.random((6, 2))
D = np.random.random((2, 1))
assert_almost_equal(multi_dot([A, B, C, D]), A.dot(B).dot(C).dot(D))
def test_vector_as_first_argument(self):
# The first argument can be 1-D
A1d = np.random.random(2) # 1-D
B = np.random.random((2, 6))
C = np.random.random((6, 2))
D = np.random.random((2, 2))
# the result should be 1-D
assert_equal(multi_dot([A1d, B, C, D]).shape, (2,))
def test_vector_as_last_argument(self):
# The last argument can be 1-D
A = np.random.random((6, 2))
B = np.random.random((2, 6))
C = np.random.random((6, 2))
D1d = np.random.random(2) # 1-D
# the result should be 1-D
assert_equal(multi_dot([A, B, C, D1d]).shape, (6,))
def test_vector_as_first_and_last_argument(self):
# The first and last arguments can be 1-D
A1d = np.random.random(2) # 1-D
B = np.random.random((2, 6))
C = np.random.random((6, 2))
D1d = np.random.random(2) # 1-D
# the result should be a scalar
assert_equal(multi_dot([A1d, B, C, D1d]).shape, ())
def test_dynamic_programming_logic(self):
# Test for the dynamic programming part
# This test is directly taken from Cormen page 376.
arrays = [np.random.random((30, 35)),
np.random.random((35, 15)),
np.random.random((15, 5)),
np.random.random((5, 10)),
np.random.random((10, 20)),
np.random.random((20, 25))]
m_expected = np.array([[0., 15750., 7875., 9375., 11875., 15125.],
[0., 0., 2625., 4375., 7125., 10500.],
[0., 0., 0., 750., 2500., 5375.],
[0., 0., 0., 0., 1000., 3500.],
[0., 0., 0., 0., 0., 5000.],
[0., 0., 0., 0., 0., 0.]])
s_expected = np.array([[0, 1, 1, 3, 3, 3],
[0, 0, 2, 3, 3, 3],
[0, 0, 0, 3, 3, 3],
[0, 0, 0, 0, 4, 5],
[0, 0, 0, 0, 0, 5],
[0, 0, 0, 0, 0, 0]], dtype=np.int)
s_expected -= 1 # Cormen uses 1-based index, python does not.
s, m = _multi_dot_matrix_chain_order(arrays, return_costs=True)
# Only the upper triangular part (without the diagonal) is interesting.
assert_almost_equal(np.triu(s[:-1, 1:]),
np.triu(s_expected[:-1, 1:]))
assert_almost_equal(np.triu(m), np.triu(m_expected))
def test_too_few_input_arrays(self):
assert_raises(ValueError, multi_dot, [])
assert_raises(ValueError, multi_dot, [np.random.random((3, 3))])
if __name__ == "__main__":
run_module_suite()