from django.contrib.gis.db.models.fields import BaseSpatialField
from django.contrib.gis.measure import Distance
from django.db import NotSupportedError
from django.db.models import Expression, Lookup, Transform
from django.db.models.sql.query import Query
from django.utils.regex_helper import _lazy_re_compile
class RasterBandTransform(Transform):
def as_sql(self, compiler, connection):
return compiler.compile(self.lhs)
class GISLookup(Lookup):
sql_template = None
transform_func = None
distance = False
band_rhs = None
band_lhs = None
def __init__(self, lhs, rhs):
rhs, *self.rhs_params = rhs if isinstance(rhs, (list, tuple)) else [rhs]
super().__init__(lhs, rhs)
self.template_params = {}
self.process_rhs_params()
def process_rhs_params(self):
if self.rhs_params:
# Check if a band index was passed in the query argument.
if len(self.rhs_params) == (2 if self.lookup_name == "relate" else 1):
self.process_band_indices()
elif len(self.rhs_params) > 1:
raise ValueError("Tuple too long for lookup %s." % self.lookup_name)
elif isinstance(self.lhs, RasterBandTransform):
self.process_band_indices(only_lhs=True)
def process_band_indices(self, only_lhs=False):
"""
Extract the lhs band index from the band transform class and the rhs
band index from the input tuple.
"""
# PostGIS band indices are 1-based, so the band index needs to be
# increased to be consistent with the GDALRaster band indices.
if only_lhs:
self.band_rhs = 1
self.band_lhs = self.lhs.band_index + 1
return
if isinstance(self.lhs, RasterBandTransform):
self.band_lhs = self.lhs.band_index + 1
else:
self.band_lhs = 1
self.band_rhs, *self.rhs_params = self.rhs_params
def get_db_prep_lookup(self, value, connection):
# get_db_prep_lookup is called by process_rhs from super class
return ("%s", [connection.ops.Adapter(value)])
def process_rhs(self, compiler, connection):
if isinstance(self.rhs, Query):
# If rhs is some Query, don't touch it.
return super().process_rhs(compiler, connection)
if isinstance(self.rhs, Expression):
self.rhs = self.rhs.resolve_expression(compiler.query)
rhs, rhs_params = super().process_rhs(compiler, connection)
placeholder = connection.ops.get_geom_placeholder(
self.lhs.output_field, self.rhs, compiler
)
return placeholder % rhs, rhs_params
def get_rhs_op(self, connection, rhs):
# Unlike BuiltinLookup, the GIS get_rhs_op() implementation should return
# an object (SpatialOperator) with an as_sql() method to allow for more
# complex computations (where the lhs part can be mixed in).
return connection.ops.gis_operators[self.lookup_name]
def as_sql(self, compiler, connection):
lhs_sql, lhs_params = self.process_lhs(compiler, connection)
rhs_sql, rhs_params = self.process_rhs(compiler, connection)
sql_params = (*lhs_params, *rhs_params)
template_params = {
"lhs": lhs_sql,
"rhs": rhs_sql,
"value": "%s",
**self.template_params,
}
rhs_op = self.get_rhs_op(connection, rhs_sql)
return rhs_op.as_sql(connection, self, template_params, sql_params)
# ------------------
# Geometry operators
# ------------------
@BaseSpatialField.register_lookup
class OverlapsLeftLookup(GISLookup):
"""
The overlaps_left operator returns true if A's bounding box overlaps or is to the
left of B's bounding box.
"""
lookup_name = "overlaps_left"
@BaseSpatialField.register_lookup
class OverlapsRightLookup(GISLookup):
"""
The 'overlaps_right' operator returns true if A's bounding box overlaps or is to the
right of B's bounding box.
"""
lookup_name = "overlaps_right"
@BaseSpatialField.register_lookup
class OverlapsBelowLookup(GISLookup):
"""
The 'overlaps_below' operator returns true if A's bounding box overlaps or is below
B's bounding box.
"""
lookup_name = "overlaps_below"
@BaseSpatialField.register_lookup
class OverlapsAboveLookup(GISLookup):
"""
The 'overlaps_above' operator returns true if A's bounding box overlaps or is above
B's bounding box.
"""
lookup_name = "overlaps_above"
@BaseSpatialField.register_lookup
class LeftLookup(GISLookup):
"""
The 'left' operator returns true if A's bounding box is strictly to the left
of B's bounding box.
"""
lookup_name = "left"
@BaseSpatialField.register_lookup
class RightLookup(GISLookup):
"""
The 'right' operator returns true if A's bounding box is strictly to the right
of B's bounding box.
"""
lookup_name = "right"
@BaseSpatialField.register_lookup
class StrictlyBelowLookup(GISLookup):
"""
The 'strictly_below' operator returns true if A's bounding box is strictly below B's
bounding box.
"""
lookup_name = "strictly_below"
@BaseSpatialField.register_lookup
class StrictlyAboveLookup(GISLookup):
"""
The 'strictly_above' operator returns true if A's bounding box is strictly above B's
bounding box.
"""
lookup_name = "strictly_above"
@BaseSpatialField.register_lookup
class SameAsLookup(GISLookup):
"""
The "~=" operator is the "same as" operator. It tests actual geometric
equality of two features. So if A and B are the same feature,
vertex-by-vertex, the operator returns true.
"""
lookup_name = "same_as"
BaseSpatialField.register_lookup(SameAsLookup, "exact")
@BaseSpatialField.register_lookup
class BBContainsLookup(GISLookup):
"""
The 'bbcontains' operator returns true if A's bounding box completely contains
by B's bounding box.
"""
lookup_name = "bbcontains"
@BaseSpatialField.register_lookup
class BBOverlapsLookup(GISLookup):
"""
The 'bboverlaps' operator returns true if A's bounding box overlaps B's
bounding box.
"""
lookup_name = "bboverlaps"
@BaseSpatialField.register_lookup
class ContainedLookup(GISLookup):
"""
The 'contained' operator returns true if A's bounding box is completely contained
by B's bounding box.
"""
lookup_name = "contained"
# ------------------
# Geometry functions
# ------------------
@BaseSpatialField.register_lookup
class ContainsLookup(GISLookup):
lookup_name = "contains"
@BaseSpatialField.register_lookup
class ContainsProperlyLookup(GISLookup):
lookup_name = "contains_properly"
@BaseSpatialField.register_lookup
class CoveredByLookup(GISLookup):
lookup_name = "coveredby"
@BaseSpatialField.register_lookup
class CoversLookup(GISLookup):
lookup_name = "covers"
@BaseSpatialField.register_lookup
class CrossesLookup(GISLookup):
lookup_name = "crosses"
@BaseSpatialField.register_lookup
class DisjointLookup(GISLookup):
lookup_name = "disjoint"
@BaseSpatialField.register_lookup
class EqualsLookup(GISLookup):
lookup_name = "equals"
@BaseSpatialField.register_lookup
class IntersectsLookup(GISLookup):
lookup_name = "intersects"
@BaseSpatialField.register_lookup
class OverlapsLookup(GISLookup):
lookup_name = "overlaps"
@BaseSpatialField.register_lookup
class RelateLookup(GISLookup):
lookup_name = "relate"
sql_template = "%(func)s(%(lhs)s, %(rhs)s, %%s)"
pattern_regex = _lazy_re_compile(r"^[012TF*]{9}$")
def process_rhs(self, compiler, connection):
# Check the pattern argument
pattern = self.rhs_params[0]
backend_op = connection.ops.gis_operators[self.lookup_name]
if hasattr(backend_op, "check_relate_argument"):
backend_op.check_relate_argument(pattern)
elif not isinstance(pattern, str) or not self.pattern_regex.match(pattern):
raise ValueError('Invalid intersection matrix pattern "%s".' % pattern)
sql, params = super().process_rhs(compiler, connection)
return sql, params + [pattern]
@BaseSpatialField.register_lookup
class TouchesLookup(GISLookup):
lookup_name = "touches"
@BaseSpatialField.register_lookup
class WithinLookup(GISLookup):
lookup_name = "within"
class DistanceLookupBase(GISLookup):
distance = True
sql_template = "%(func)s(%(lhs)s, %(rhs)s) %(op)s %(value)s"
def process_rhs_params(self):
if not 1 <= len(self.rhs_params) <= 3:
raise ValueError(
"2, 3, or 4-element tuple required for '%s' lookup." % self.lookup_name
)
elif len(self.rhs_params) == 3 and self.rhs_params[2] != "spheroid":
raise ValueError(
"For 4-element tuples the last argument must be the 'spheroid' "
"directive."
)
# Check if the second parameter is a band index.
if len(self.rhs_params) > 1 and self.rhs_params[1] != "spheroid":
self.process_band_indices()
def process_distance(self, compiler, connection):
dist_param = self.rhs_params[0]
return (
compiler.compile(dist_param.resolve_expression(compiler.query))
if hasattr(dist_param, "resolve_expression")
else (
"%s",
connection.ops.get_distance(
self.lhs.output_field, self.rhs_params, self.lookup_name
),
)
)
@BaseSpatialField.register_lookup
class DWithinLookup(DistanceLookupBase):
lookup_name = "dwithin"
sql_template = "%(func)s(%(lhs)s, %(rhs)s, %(value)s)"
def process_distance(self, compiler, connection):
dist_param = self.rhs_params[0]
if (
not connection.features.supports_dwithin_distance_expr
and hasattr(dist_param, "resolve_expression")
and not isinstance(dist_param, Distance)
):
raise NotSupportedError(
"This backend does not support expressions for specifying "
"distance in the dwithin lookup."
)
return super().process_distance(compiler, connection)
def process_rhs(self, compiler, connection):
dist_sql, dist_params = self.process_distance(compiler, connection)
self.template_params["value"] = dist_sql
rhs_sql, params = super().process_rhs(compiler, connection)
return rhs_sql, params + dist_params
class DistanceLookupFromFunction(DistanceLookupBase):
def as_sql(self, compiler, connection):
spheroid = (
len(self.rhs_params) == 2 and self.rhs_params[-1] == "spheroid"
) or None
distance_expr = connection.ops.distance_expr_for_lookup(
self.lhs, self.rhs, spheroid=spheroid
)
sql, params = compiler.compile(distance_expr.resolve_expression(compiler.query))
dist_sql, dist_params = self.process_distance(compiler, connection)
return (
"%(func)s %(op)s %(dist)s" % {"func": sql, "op": self.op, "dist": dist_sql},
params + dist_params,
)
@BaseSpatialField.register_lookup
class DistanceGTLookup(DistanceLookupFromFunction):
lookup_name = "distance_gt"
op = ">"
@BaseSpatialField.register_lookup
class DistanceGTELookup(DistanceLookupFromFunction):
lookup_name = "distance_gte"
op = ">="
@BaseSpatialField.register_lookup
class DistanceLTLookup(DistanceLookupFromFunction):
lookup_name = "distance_lt"
op = "<"
@BaseSpatialField.register_lookup
class DistanceLTELookup(DistanceLookupFromFunction):
lookup_name = "distance_lte"
op = "<="